Metamath Proof Explorer


Theorem lfl0sc

Description: The (right vector space) scalar product of a functional with zero is the zero functional. Note that the first occurrence of ( V X. { .0. } ) represents the zero scalar, and the second is the zero functional. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses lfl0sc.v V = Base W
lfl0sc.d D = Scalar W
lfl0sc.f F = LFnl W
lfl0sc.k K = Base D
lfl0sc.t · ˙ = D
lfl0sc.o 0 ˙ = 0 D
lfl0sc.w φ W LMod
lfl0sc.g φ G F
Assertion lfl0sc φ G · ˙ f V × 0 ˙ = V × 0 ˙

Proof

Step Hyp Ref Expression
1 lfl0sc.v V = Base W
2 lfl0sc.d D = Scalar W
3 lfl0sc.f F = LFnl W
4 lfl0sc.k K = Base D
5 lfl0sc.t · ˙ = D
6 lfl0sc.o 0 ˙ = 0 D
7 lfl0sc.w φ W LMod
8 lfl0sc.g φ G F
9 1 fvexi V V
10 9 a1i φ V V
11 2 4 1 3 lflf W LMod G F G : V K
12 7 8 11 syl2anc φ G : V K
13 2 lmodring W LMod D Ring
14 7 13 syl φ D Ring
15 4 6 ring0cl D Ring 0 ˙ K
16 14 15 syl φ 0 ˙ K
17 4 5 6 ringrz D Ring k K k · ˙ 0 ˙ = 0 ˙
18 14 17 sylan φ k K k · ˙ 0 ˙ = 0 ˙
19 10 12 16 16 18 caofid1 φ G · ˙ f V × 0 ˙ = V × 0 ˙