Metamath Proof Explorer


Theorem lgsfle1

Description: The function F has magnitude less or equal to 1 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
Assertion lgsfle1 ANN0MFM1

Proof

Step Hyp Ref Expression
1 lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
2 eqid x|x1=x|x1
3 1 2 lgsfcl2 ANN0F:x|x1
4 3 ffvelcdmda ANN0MFMx|x1
5 fveq2 x=FMx=FM
6 5 breq1d x=FMx1FM1
7 6 elrab FMx|x1FMFM1
8 7 simprbi FMx|x1FM1
9 4 8 syl ANN0MFM1