Metamath Proof Explorer


Theorem lidlnz

Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlnz.u U=LIdealR
lidlnz.z 0˙=0R
Assertion lidlnz RRingIUI0˙xIx0˙

Proof

Step Hyp Ref Expression
1 lidlnz.u U=LIdealR
2 lidlnz.z 0˙=0R
3 1 2 lidl0cl RRingIU0˙I
4 3 snssd RRingIU0˙I
5 4 3adant3 RRingIUI0˙0˙I
6 simp3 RRingIUI0˙I0˙
7 6 necomd RRingIUI0˙0˙I
8 df-pss 0˙I0˙I0˙I
9 5 7 8 sylanbrc RRingIUI0˙0˙I
10 pssnel 0˙IxxI¬x0˙
11 9 10 syl RRingIUI0˙xxI¬x0˙
12 velsn x0˙x=0˙
13 12 necon3bbii ¬x0˙x0˙
14 13 anbi2i xI¬x0˙xIx0˙
15 14 exbii xxI¬x0˙xxIx0˙
16 df-rex xIx0˙xxIx0˙
17 15 16 bitr4i xxI¬x0˙xIx0˙
18 11 17 sylib RRingIUI0˙xIx0˙