Metamath Proof Explorer


Theorem liminf0

Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminf0 lim inf = +∞

Proof

Step Hyp Ref Expression
1 nftru x
2 0ex V
3 2 a1i V
4 0red 0
5 noel ¬ x
6 elinel1 x 0 +∞ x
7 6 con3i ¬ x ¬ x 0 +∞
8 5 7 ax-mp ¬ x 0 +∞
9 pm2.21 ¬ x 0 +∞ x 0 +∞ x *
10 8 9 ax-mp x 0 +∞ x *
11 10 adantl x 0 +∞ x *
12 1 3 4 11 liminfval3 lim inf x x = lim sup x x
13 12 mptru lim inf x x = lim sup x x
14 mpt0 x x =
15 14 fveq2i lim inf x x = lim inf
16 mpt0 x x =
17 16 fveq2i lim sup x x = lim sup
18 limsup0 lim sup = −∞
19 17 18 eqtri lim sup x x = −∞
20 19 xnegeqi lim sup x x = −∞
21 xnegmnf −∞ = +∞
22 20 21 eqtri lim sup x x = +∞
23 13 15 22 3eqtr3i lim inf = +∞