Metamath Proof Explorer


Theorem liminf0

Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminf0 lim inf=+∞

Proof

Step Hyp Ref Expression
1 nftru x
2 0ex V
3 2 a1i V
4 0red 0
5 noel ¬x
6 elinel1 x0+∞x
7 6 con3i ¬x¬x0+∞
8 5 7 ax-mp ¬x0+∞
9 pm2.21 ¬x0+∞x0+∞x*
10 8 9 ax-mp x0+∞x*
11 10 adantl x0+∞x*
12 1 3 4 11 liminfval3 lim infxx=lim supxx
13 12 mptru lim infxx=lim supxx
14 mpt0 xx=
15 14 fveq2i lim infxx=lim inf
16 mpt0 xx=
17 16 fveq2i lim supxx=lim sup
18 limsup0 lim sup=−∞
19 17 18 eqtri lim supxx=−∞
20 19 xnegeqi lim supxx=−∞
21 xnegmnf −∞=+∞
22 20 21 eqtri lim supxx=+∞
23 13 15 22 3eqtr3i lim inf=+∞