Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | limsssuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid | |
|
2 | sstr2 | |
|
3 | 1 2 | mpi | |
4 | eleq1 | |
|
5 | 4 | biimpcd | |
6 | limsuc | |
|
7 | 6 | biimpa | |
8 | limord | |
|
9 | ordelord | |
|
10 | 8 9 | sylan | |
11 | ordsuc | |
|
12 | 10 11 | sylib | |
13 | ordtri1 | |
|
14 | 8 12 13 | syl2an2r | |
15 | 14 | con2bid | |
16 | 7 15 | mpbid | |
17 | 16 | ex | |
18 | 5 17 | sylan9r | |
19 | 18 | con2d | |
20 | 19 | ex | |
21 | 20 | com23 | |
22 | 21 | imp31 | |
23 | ssel2 | |
|
24 | vex | |
|
25 | 24 | elsuc | |
26 | 23 25 | sylib | |
27 | 26 | ord | |
28 | 27 | con1d | |
29 | 28 | adantll | |
30 | 22 29 | mpd | |
31 | 30 | ex | |
32 | 31 | ssrdv | |
33 | 32 | ex | |
34 | 3 33 | impbid2 | |