Metamath Proof Explorer


Theorem limsssuc

Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion limsssuc LimAABAsucB

Proof

Step Hyp Ref Expression
1 sssucid BsucB
2 sstr2 ABBsucBAsucB
3 1 2 mpi ABAsucB
4 eleq1 x=BxABA
5 4 biimpcd xAx=BBA
6 limsuc LimABAsucBA
7 6 biimpa LimABAsucBA
8 limord LimAOrdA
9 ordelord OrdABAOrdB
10 8 9 sylan LimABAOrdB
11 ordsuc OrdBOrdsucB
12 10 11 sylib LimABAOrdsucB
13 ordtri1 OrdAOrdsucBAsucB¬sucBA
14 8 12 13 syl2an2r LimABAAsucB¬sucBA
15 14 con2bid LimABAsucBA¬AsucB
16 7 15 mpbid LimABA¬AsucB
17 16 ex LimABA¬AsucB
18 5 17 sylan9r LimAxAx=B¬AsucB
19 18 con2d LimAxAAsucB¬x=B
20 19 ex LimAxAAsucB¬x=B
21 20 com23 LimAAsucBxA¬x=B
22 21 imp31 LimAAsucBxA¬x=B
23 ssel2 AsucBxAxsucB
24 vex xV
25 24 elsuc xsucBxBx=B
26 23 25 sylib AsucBxAxBx=B
27 26 ord AsucBxA¬xBx=B
28 27 con1d AsucBxA¬x=BxB
29 28 adantll LimAAsucBxA¬x=BxB
30 22 29 mpd LimAAsucBxAxB
31 30 ex LimAAsucBxAxB
32 31 ssrdv LimAAsucBAB
33 32 ex LimAAsucBAB
34 3 33 impbid2 LimAABAsucB