Metamath Proof Explorer


Theorem limsupub2

Description: A extended real valued function, with limsup that is not +oo , is eventually less than +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses limsupub2.1 jφ
limsupub2.2 _jF
limsupub2.3 φA
limsupub2.4 φF:A*
limsupub2.5 φlim supF+∞
Assertion limsupub2 φkjAkjFj<+∞

Proof

Step Hyp Ref Expression
1 limsupub2.1 jφ
2 limsupub2.2 _jF
3 limsupub2.3 φA
4 limsupub2.4 φF:A*
5 limsupub2.5 φlim supF+∞
6 nfv jx
7 1 6 nfan jφx
8 nfv jk
9 7 8 nfan jφxk
10 4 ffvelcdmda φjAFj*
11 10 ad5ant14 φxkjAFjxFj*
12 rexr xx*
13 12 ad4antlr φxkjAFjxx*
14 pnfxr +∞*
15 14 a1i φxkjAFjx+∞*
16 simpr φxkjAFjxFjx
17 ltpnf xx<+∞
18 17 ad4antlr φxkjAFjxx<+∞
19 11 13 15 16 18 xrlelttrd φxkjAFjxFj<+∞
20 19 ex φxkjAFjxFj<+∞
21 20 imim2d φxkjAkjFjxkjFj<+∞
22 9 21 ralimdaa φxkjAkjFjxjAkjFj<+∞
23 22 reximdva φxkjAkjFjxkjAkjFj<+∞
24 23 imp φxkjAkjFjxkjAkjFj<+∞
25 1 2 3 4 5 limsupub φxkjAkjFjx
26 24 25 r19.29a φkjAkjFj<+∞