Metamath Proof Explorer


Theorem limsupubuzmpt

Description: If the limsup is not +oo , then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupubuzmpt.j j φ
limsupubuzmpt.z Z = M
limsupubuzmpt.b φ j Z B
limsupubuzmpt.n φ lim sup j Z B +∞
Assertion limsupubuzmpt φ x j Z B x

Proof

Step Hyp Ref Expression
1 limsupubuzmpt.j j φ
2 limsupubuzmpt.z Z = M
3 limsupubuzmpt.b φ j Z B
4 limsupubuzmpt.n φ lim sup j Z B +∞
5 nfmpt1 _ j j Z B
6 eqid j Z B = j Z B
7 1 3 6 fmptdf φ j Z B : Z
8 5 2 7 4 limsupubuz φ y j Z j Z B j y
9 6 a1i φ j Z B = j Z B
10 9 3 fvmpt2d φ j Z j Z B j = B
11 10 breq1d φ j Z j Z B j y B y
12 1 11 ralbida φ j Z j Z B j y j Z B y
13 12 rexbidv φ y j Z j Z B j y y j Z B y
14 8 13 mpbid φ y j Z B y
15 breq2 y = x B y B x
16 15 ralbidv y = x j Z B y j Z B x
17 16 cbvrexvw y j Z B y x j Z B x
18 14 17 sylib φ x j Z B x