Metamath Proof Explorer


Theorem limsupval

Description: The superior limit of an infinite sequence F of extended real numbers, which is the infimum of the set of suprema of all upper infinite subsequences of F . Definition 12-4.1 of Gleason p. 175. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2014)

Ref Expression
Hypothesis limsupval.1 G=ksupFk+∞**<
Assertion limsupval FVlim supF=supranG*<

Proof

Step Hyp Ref Expression
1 limsupval.1 G=ksupFk+∞**<
2 elex FVFV
3 imaeq1 x=Fxk+∞=Fk+∞
4 3 ineq1d x=Fxk+∞*=Fk+∞*
5 4 supeq1d x=Fsupxk+∞**<=supFk+∞**<
6 5 mpteq2dv x=Fksupxk+∞**<=ksupFk+∞**<
7 6 1 eqtr4di x=Fksupxk+∞**<=G
8 7 rneqd x=Franksupxk+∞**<=ranG
9 8 infeq1d x=Fsupranksupxk+∞**<*<=supranG*<
10 df-limsup lim sup=xVsupranksupxk+∞**<*<
11 xrltso <Or*
12 11 infex supranG*<V
13 9 10 12 fvmpt FVlim supF=supranG*<
14 2 13 syl FVlim supF=supranG*<