Metamath Proof Explorer


Theorem limsupvaluzmpt

Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo ). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluzmpt.j j φ
limsupvaluzmpt.m φ M
limsupvaluzmpt.z Z = M
limsupvaluzmpt.b φ j Z B *
Assertion limsupvaluzmpt φ lim sup j Z B = sup ran k Z sup ran j k B * < * <

Proof

Step Hyp Ref Expression
1 limsupvaluzmpt.j j φ
2 limsupvaluzmpt.m φ M
3 limsupvaluzmpt.z Z = M
4 limsupvaluzmpt.b φ j Z B *
5 1 4 fmptd2f φ j Z B : Z *
6 2 3 5 limsupvaluz φ lim sup j Z B = sup ran k Z sup ran j Z B k * < * <
7 3 uzssd3 k Z k Z
8 7 resmptd k Z j Z B k = j k B
9 8 rneqd k Z ran j Z B k = ran j k B
10 9 supeq1d k Z sup ran j Z B k * < = sup ran j k B * <
11 10 mpteq2ia k Z sup ran j Z B k * < = k Z sup ran j k B * <
12 11 a1i φ k Z sup ran j Z B k * < = k Z sup ran j k B * <
13 12 rneqd φ ran k Z sup ran j Z B k * < = ran k Z sup ran j k B * <
14 13 infeq1d φ sup ran k Z sup ran j Z B k * < * < = sup ran k Z sup ran j k B * < * <
15 6 14 eqtrd φ lim sup j Z B = sup ran k Z sup ran j k B * < * <