Metamath Proof Explorer


Theorem lincext1

Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019) (Revised by AV, 29-Apr-2019)

Ref Expression
Hypotheses lincext.b B = Base M
lincext.r R = Scalar M
lincext.e E = Base R
lincext.0 0 ˙ = 0 R
lincext.z Z = 0 M
lincext.n N = inv g R
lincext.f F = z S if z = X N Y G z
Assertion lincext1 M LMod S 𝒫 B Y E X S G E S X F E S

Proof

Step Hyp Ref Expression
1 lincext.b B = Base M
2 lincext.r R = Scalar M
3 lincext.e E = Base R
4 lincext.0 0 ˙ = 0 R
5 lincext.z Z = 0 M
6 lincext.n N = inv g R
7 lincext.f F = z S if z = X N Y G z
8 eqid Scalar M = Scalar M
9 8 lmodfgrp M LMod Scalar M Grp
10 9 ad2antrr M LMod S 𝒫 B Y E X S G E S X Scalar M Grp
11 2 10 eqeltrid M LMod S 𝒫 B Y E X S G E S X R Grp
12 simpr1 M LMod S 𝒫 B Y E X S G E S X Y E
13 3 6 grpinvcl R Grp Y E N Y E
14 11 12 13 syl2anc M LMod S 𝒫 B Y E X S G E S X N Y E
15 14 ad2antrr M LMod S 𝒫 B Y E X S G E S X z S z = X N Y E
16 elmapi G E S X G : S X E
17 df-ne z X ¬ z = X
18 17 biimpri ¬ z = X z X
19 18 anim2i z S ¬ z = X z S z X
20 eldifsn z S X z S z X
21 19 20 sylibr z S ¬ z = X z S X
22 ffvelrn G : S X E z S X G z E
23 21 22 sylan2 G : S X E z S ¬ z = X G z E
24 23 ex G : S X E z S ¬ z = X G z E
25 16 24 syl G E S X z S ¬ z = X G z E
26 25 3ad2ant3 Y E X S G E S X z S ¬ z = X G z E
27 26 adantl M LMod S 𝒫 B Y E X S G E S X z S ¬ z = X G z E
28 27 impl M LMod S 𝒫 B Y E X S G E S X z S ¬ z = X G z E
29 15 28 ifclda M LMod S 𝒫 B Y E X S G E S X z S if z = X N Y G z E
30 29 fmpttd M LMod S 𝒫 B Y E X S G E S X z S if z = X N Y G z : S E
31 simpr M LMod S 𝒫 B S 𝒫 B
32 3 fvexi E V
33 31 32 jctil M LMod S 𝒫 B E V S 𝒫 B
34 33 adantr M LMod S 𝒫 B Y E X S G E S X E V S 𝒫 B
35 elmapg E V S 𝒫 B z S if z = X N Y G z E S z S if z = X N Y G z : S E
36 34 35 syl M LMod S 𝒫 B Y E X S G E S X z S if z = X N Y G z E S z S if z = X N Y G z : S E
37 30 36 mpbird M LMod S 𝒫 B Y E X S G E S X z S if z = X N Y G z E S
38 7 37 eqeltrid M LMod S 𝒫 B Y E X S G E S X F E S