Metamath Proof Explorer


Theorem lincext1

Description: Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019) (Revised by AV, 29-Apr-2019)

Ref Expression
Hypotheses lincext.b B=BaseM
lincext.r R=ScalarM
lincext.e E=BaseR
lincext.0 0˙=0R
lincext.z Z=0M
lincext.n N=invgR
lincext.f F=zSifz=XNYGz
Assertion lincext1 MLModS𝒫BYEXSGESXFES

Proof

Step Hyp Ref Expression
1 lincext.b B=BaseM
2 lincext.r R=ScalarM
3 lincext.e E=BaseR
4 lincext.0 0˙=0R
5 lincext.z Z=0M
6 lincext.n N=invgR
7 lincext.f F=zSifz=XNYGz
8 eqid ScalarM=ScalarM
9 8 lmodfgrp MLModScalarMGrp
10 9 ad2antrr MLModS𝒫BYEXSGESXScalarMGrp
11 2 10 eqeltrid MLModS𝒫BYEXSGESXRGrp
12 simpr1 MLModS𝒫BYEXSGESXYE
13 3 6 grpinvcl RGrpYENYE
14 11 12 13 syl2anc MLModS𝒫BYEXSGESXNYE
15 14 ad2antrr MLModS𝒫BYEXSGESXzSz=XNYE
16 elmapi GESXG:SXE
17 df-ne zX¬z=X
18 17 biimpri ¬z=XzX
19 18 anim2i zS¬z=XzSzX
20 eldifsn zSXzSzX
21 19 20 sylibr zS¬z=XzSX
22 ffvelcdm G:SXEzSXGzE
23 21 22 sylan2 G:SXEzS¬z=XGzE
24 23 ex G:SXEzS¬z=XGzE
25 16 24 syl GESXzS¬z=XGzE
26 25 3ad2ant3 YEXSGESXzS¬z=XGzE
27 26 adantl MLModS𝒫BYEXSGESXzS¬z=XGzE
28 27 impl MLModS𝒫BYEXSGESXzS¬z=XGzE
29 15 28 ifclda MLModS𝒫BYEXSGESXzSifz=XNYGzE
30 29 fmpttd MLModS𝒫BYEXSGESXzSifz=XNYGz:SE
31 simpr MLModS𝒫BS𝒫B
32 3 fvexi EV
33 31 32 jctil MLModS𝒫BEVS𝒫B
34 33 adantr MLModS𝒫BYEXSGESXEVS𝒫B
35 elmapg EVS𝒫BzSifz=XNYGzESzSifz=XNYGz:SE
36 34 35 syl MLModS𝒫BYEXSGESXzSifz=XNYGzESzSifz=XNYGz:SE
37 30 36 mpbird MLModS𝒫BYEXSGESXzSifz=XNYGzES
38 7 37 eqeltrid MLModS𝒫BYEXSGESXFES