Metamath Proof Explorer


Theorem linecgr

Description: Congruence rule for lines. Theorem 4.17 of Schwabhauser p. 37. (Contributed by Scott Fenton, 6-Oct-2013)

Ref Expression
Assertion linecgr NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQCPCgrCQ

Proof

Step Hyp Ref Expression
1 simprlr NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAColinearBC
2 cgr3rflx NA𝔼NB𝔼NC𝔼NABCCgr3ABC
3 2 3adant3 NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABCCgr3ABC
4 3 adantr NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQABCCgr3ABC
5 simprr NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAPCgrAQBPCgrBQ
6 1 4 5 3jca NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAColinearBCABCCgr3ABCAPCgrAQBPCgrBQ
7 simprll NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAB
8 6 7 jca NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAColinearBCABCCgr3ABCAPCgrAQBPCgrBQAB
9 8 ex NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQAColinearBCABCCgr3ABCAPCgrAQBPCgrBQAB
10 simp1 NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NN
11 simp21 NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NA𝔼N
12 simp22 NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NB𝔼N
13 simp23 NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NC𝔼N
14 simp3l NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NP𝔼N
15 simp3r NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NQ𝔼N
16 brfs NA𝔼NB𝔼NC𝔼NP𝔼NA𝔼NB𝔼NC𝔼NQ𝔼NABCPFiveSegABCQAColinearBCABCCgr3ABCAPCgrAQBPCgrBQ
17 16 anbi1d NA𝔼NB𝔼NC𝔼NP𝔼NA𝔼NB𝔼NC𝔼NQ𝔼NABCPFiveSegABCQABAColinearBCABCCgr3ABCAPCgrAQBPCgrBQAB
18 fscgr NA𝔼NB𝔼NC𝔼NP𝔼NA𝔼NB𝔼NC𝔼NQ𝔼NABCPFiveSegABCQABCPCgrCQ
19 17 18 sylbird NA𝔼NB𝔼NC𝔼NP𝔼NA𝔼NB𝔼NC𝔼NQ𝔼NAColinearBCABCCgr3ABCAPCgrAQBPCgrBQABCPCgrCQ
20 10 11 12 13 14 11 12 13 15 19 syl333anc NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NAColinearBCABCCgr3ABCAPCgrAQBPCgrBQABCPCgrCQ
21 9 20 syld NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQCPCgrCQ