Metamath Proof Explorer


Theorem linepsubclN

Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses linepsubcl.n N=LinesK
linepsubcl.c C=PSubClK
Assertion linepsubclN KHLXNXC

Proof

Step Hyp Ref Expression
1 linepsubcl.n N=LinesK
2 linepsubcl.c C=PSubClK
3 hllat KHLKLat
4 eqid joinK=joinK
5 eqid AtomsK=AtomsK
6 eqid pmapK=pmapK
7 4 5 1 6 isline2 KLatXNpAtomsKqAtomsKpqX=pmapKpjoinKq
8 3 7 syl KHLXNpAtomsKqAtomsKpqX=pmapKpjoinKq
9 3 adantr KHLpAtomsKqAtomsKKLat
10 eqid BaseK=BaseK
11 10 5 atbase pAtomsKpBaseK
12 11 ad2antrl KHLpAtomsKqAtomsKpBaseK
13 10 5 atbase qAtomsKqBaseK
14 13 ad2antll KHLpAtomsKqAtomsKqBaseK
15 10 4 latjcl KLatpBaseKqBaseKpjoinKqBaseK
16 9 12 14 15 syl3anc KHLpAtomsKqAtomsKpjoinKqBaseK
17 10 6 2 pmapsubclN KHLpjoinKqBaseKpmapKpjoinKqC
18 16 17 syldan KHLpAtomsKqAtomsKpmapKpjoinKqC
19 eleq1a pmapKpjoinKqCX=pmapKpjoinKqXC
20 18 19 syl KHLpAtomsKqAtomsKX=pmapKpjoinKqXC
21 20 adantld KHLpAtomsKqAtomsKpqX=pmapKpjoinKqXC
22 21 rexlimdvva KHLpAtomsKqAtomsKpqX=pmapKpjoinKqXC
23 8 22 sylbid KHLXNXC
24 23 imp KHLXNXC