Metamath Proof Explorer


Theorem llnn0

Description: A lattice line is nonzero. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses llnn0.z 0˙=0.K
llnn0.n N=LLinesK
Assertion llnn0 KHLXNX0˙

Proof

Step Hyp Ref Expression
1 llnn0.z 0˙=0.K
2 llnn0.n N=LLinesK
3 eqid AtomsK=AtomsK
4 3 atex KHLAtomsK
5 n0 AtomsKppAtomsK
6 4 5 sylib KHLppAtomsK
7 6 adantr KHLXNppAtomsK
8 eqid K=K
9 8 3 2 llnnleat KHLXNpAtomsK¬XKp
10 9 3expa KHLXNpAtomsK¬XKp
11 hlop KHLKOP
12 11 ad2antrr KHLXNpAtomsKKOP
13 eqid BaseK=BaseK
14 13 3 atbase pAtomsKpBaseK
15 14 adantl KHLXNpAtomsKpBaseK
16 13 8 1 op0le KOPpBaseK0˙Kp
17 12 15 16 syl2anc KHLXNpAtomsK0˙Kp
18 breq1 X=0˙XKp0˙Kp
19 17 18 syl5ibrcom KHLXNpAtomsKX=0˙XKp
20 19 necon3bd KHLXNpAtomsK¬XKpX0˙
21 10 20 mpd KHLXNpAtomsKX0˙
22 7 21 exlimddv KHLXNX0˙