Metamath Proof Explorer


Theorem llnnleat

Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012)

Ref Expression
Hypotheses llnnleat.l ˙=K
llnnleat.a A=AtomsK
llnnleat.n N=LLinesK
Assertion llnnleat KHLXNPA¬X˙P

Proof

Step Hyp Ref Expression
1 llnnleat.l ˙=K
2 llnnleat.a A=AtomsK
3 llnnleat.n N=LLinesK
4 simp2 KHLXNPAXN
5 eqid BaseK=BaseK
6 eqid K=K
7 5 6 2 3 islln KHLXNXBaseKqAqKX
8 7 3ad2ant1 KHLXNPAXNXBaseKqAqKX
9 4 8 mpbid KHLXNPAXBaseKqAqKX
10 9 simprd KHLXNPAqAqKX
11 simp11 KHLXNPAqAqKXKHL
12 hlatl KHLKAtLat
13 11 12 syl KHLXNPAqAqKXKAtLat
14 simp2 KHLXNPAqAqKXqA
15 simp13 KHLXNPAqAqKXPA
16 eqid <K=<K
17 16 2 atnlt KAtLatqAPA¬q<KP
18 13 14 15 17 syl3anc KHLXNPAqAqKX¬q<KP
19 5 2 atbase qAqBaseK
20 19 3ad2ant2 KHLXNPAqAqKXqBaseK
21 simp12 KHLXNPAqAqKXXN
22 5 3 llnbase XNXBaseK
23 21 22 syl KHLXNPAqAqKXXBaseK
24 simp3 KHLXNPAqAqKXqKX
25 5 16 6 cvrlt KHLqBaseKXBaseKqKXq<KX
26 11 20 23 24 25 syl31anc KHLXNPAqAqKXq<KX
27 hlpos KHLKPoset
28 11 27 syl KHLXNPAqAqKXKPoset
29 5 2 atbase PAPBaseK
30 15 29 syl KHLXNPAqAqKXPBaseK
31 5 1 16 pltletr KPosetqBaseKXBaseKPBaseKq<KXX˙Pq<KP
32 28 20 23 30 31 syl13anc KHLXNPAqAqKXq<KXX˙Pq<KP
33 26 32 mpand KHLXNPAqAqKXX˙Pq<KP
34 18 33 mtod KHLXNPAqAqKX¬X˙P
35 34 rexlimdv3a KHLXNPAqAqKX¬X˙P
36 10 35 mpd KHLXNPA¬X˙P