Metamath Proof Explorer


Theorem lmbr2

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmbr.2 φJTopOnX
lmbr2.4 Z=M
lmbr2.5 φM
Assertion lmbr2 φFtJPFX𝑝𝑚PXuJPujZkjkdomFFku

Proof

Step Hyp Ref Expression
1 lmbr.2 φJTopOnX
2 lmbr2.4 Z=M
3 lmbr2.5 φM
4 1 lmbr φFtJPFX𝑝𝑚PXuJPuzranFz:zu
5 uzf :𝒫
6 ffn :𝒫Fn
7 reseq2 z=jFz=Fj
8 id z=jz=j
9 7 8 feq12d z=jFz:zuFj:ju
10 9 rexrn FnzranFz:zujFj:ju
11 5 6 10 mp2b zranFz:zujFj:ju
12 pmfun FX𝑝𝑚FunF
13 12 ad2antrl φFX𝑝𝑚PXFunF
14 ffvresb FunFFj:jukjkdomFFku
15 13 14 syl φFX𝑝𝑚PXFj:jukjkdomFFku
16 15 rexbidv φFX𝑝𝑚PXjFj:jujkjkdomFFku
17 3 adantr φFX𝑝𝑚PXM
18 2 rexuz3 MjZkjkdomFFkujkjkdomFFku
19 17 18 syl φFX𝑝𝑚PXjZkjkdomFFkujkjkdomFFku
20 16 19 bitr4d φFX𝑝𝑚PXjFj:jujZkjkdomFFku
21 11 20 bitrid φFX𝑝𝑚PXzranFz:zujZkjkdomFFku
22 21 imbi2d φFX𝑝𝑚PXPuzranFz:zuPujZkjkdomFFku
23 22 ralbidv φFX𝑝𝑚PXuJPuzranFz:zuuJPujZkjkdomFFku
24 23 pm5.32da φFX𝑝𝑚PXuJPuzranFz:zuFX𝑝𝑚PXuJPujZkjkdomFFku
25 df-3an FX𝑝𝑚PXuJPuzranFz:zuFX𝑝𝑚PXuJPuzranFz:zu
26 df-3an FX𝑝𝑚PXuJPujZkjkdomFFkuFX𝑝𝑚PXuJPujZkjkdomFFku
27 24 25 26 3bitr4g φFX𝑝𝑚PXuJPuzranFz:zuFX𝑝𝑚PXuJPujZkjkdomFFku
28 4 27 bitrd φFtJPFX𝑝𝑚PXuJPujZkjkdomFFku