Metamath Proof Explorer


Theorem lmbrf

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 presupposes that F is a function. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmbr.2 φJTopOnX
lmbr2.4 Z=M
lmbr2.5 φM
lmbrf.6 φF:ZX
lmbrf.7 φkZFk=A
Assertion lmbrf φFtJPPXuJPujZkjAu

Proof

Step Hyp Ref Expression
1 lmbr.2 φJTopOnX
2 lmbr2.4 Z=M
3 lmbr2.5 φM
4 lmbrf.6 φF:ZX
5 lmbrf.7 φkZFk=A
6 1 2 3 lmbr2 φFtJPFX𝑝𝑚PXuJPujZkjkdomFFku
7 3anass FX𝑝𝑚PXuJPujZkjkdomFFkuFX𝑝𝑚PXuJPujZkjkdomFFku
8 2 uztrn2 jZkjkZ
9 5 eleq1d φkZFkuAu
10 4 fdmd φdomF=Z
11 10 eleq2d φkdomFkZ
12 11 biimpar φkZkdomF
13 12 biantrurd φkZFkukdomFFku
14 9 13 bitr3d φkZAukdomFFku
15 8 14 sylan2 φjZkjAukdomFFku
16 15 anassrs φjZkjAukdomFFku
17 16 ralbidva φjZkjAukjkdomFFku
18 17 rexbidva φjZkjAujZkjkdomFFku
19 18 imbi2d φPujZkjAuPujZkjkdomFFku
20 19 ralbidv φuJPujZkjAuuJPujZkjkdomFFku
21 20 anbi2d φPXuJPujZkjAuPXuJPujZkjkdomFFku
22 toponmax JTopOnXXJ
23 1 22 syl φXJ
24 cnex V
25 23 24 jctir φXJV
26 uzssz M
27 zsscn
28 26 27 sstri M
29 2 28 eqsstri Z
30 4 29 jctir φF:ZXZ
31 elpm2r XJVF:ZXZFX𝑝𝑚
32 25 30 31 syl2anc φFX𝑝𝑚
33 32 biantrurd φPXuJPujZkjkdomFFkuFX𝑝𝑚PXuJPujZkjkdomFFku
34 21 33 bitr2d φFX𝑝𝑚PXuJPujZkjkdomFFkuPXuJPujZkjAu
35 7 34 bitrid φFX𝑝𝑚PXuJPujZkjkdomFFkuPXuJPujZkjAu
36 6 35 bitrd φFtJPPXuJPujZkjAu