Metamath Proof Explorer


Theorem lmcn

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014)

Ref Expression
Hypotheses lmcnp.3 φFtJP
lmcn.4 φGJCnK
Assertion lmcn φGFtKGP

Proof

Step Hyp Ref Expression
1 lmcnp.3 φFtJP
2 lmcn.4 φGJCnK
3 cntop1 GJCnKJTop
4 2 3 syl φJTop
5 toptopon2 JTopJTopOnJ
6 4 5 sylib φJTopOnJ
7 lmcl JTopOnJFtJPPJ
8 6 1 7 syl2anc φPJ
9 eqid J=J
10 9 cncnpi GJCnKPJGJCnPKP
11 2 8 10 syl2anc φGJCnPKP
12 1 11 lmcnp φGFtKGP