Metamath Proof Explorer


Theorem lmicdim

Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Mar-2025)

Ref Expression
Hypotheses lmicdim.1 φS𝑚T
lmicdim.2 φSLVec
Assertion lmicdim φdimS=dimT

Proof

Step Hyp Ref Expression
1 lmicdim.1 φS𝑚T
2 lmicdim.2 φSLVec
3 brlmic S𝑚TSLMIsoT
4 1 3 sylib φSLMIsoT
5 n0 SLMIsoTffSLMIsoT
6 4 5 sylib φffSLMIsoT
7 simpr φfSLMIsoTfSLMIsoT
8 2 adantr φfSLMIsoTSLVec
9 7 8 lmimdim φfSLMIsoTdimS=dimT
10 6 9 exlimddv φdimS=dimT