Description: Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | lmodslmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodcmn | |
|
2 | eqid | |
|
3 | 2 | lmodring | |
4 | ringsrg | |
|
5 | 3 4 | syl | |
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 6 7 8 2 9 10 11 12 | islmod | |
14 | 13 | simp3bi | |
15 | 14 | r19.21bi | |
16 | 15 | r19.21bi | |
17 | 16 | r19.21bi | |
18 | 17 | r19.21bi | |
19 | 18 | simpld | |
20 | 18 | simprd | |
21 | 20 | simpld | |
22 | 20 | simprd | |
23 | simp-4l | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 6 2 8 24 25 | lmod0vs | |
27 | 23 26 | sylancom | |
28 | 21 22 27 | 3jca | |
29 | 19 28 | jca | |
30 | 29 | ralrimiva | |
31 | 30 | ralrimiva | |
32 | 31 | ralrimiva | |
33 | 32 | ralrimiva | |
34 | 6 7 8 25 2 9 10 11 12 24 | isslmd | |
35 | 1 5 33 34 | syl3anbrc | |