Description: Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodvslmhm.v | |
|
lmodvslmhm.f | |
||
lmodvslmhm.s | |
||
lmodvslmhm.k | |
||
Assertion | lmodvslmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvslmhm.v | |
|
2 | lmodvslmhm.f | |
|
3 | lmodvslmhm.s | |
|
4 | lmodvslmhm.k | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 | lmodfgrp | |
8 | 7 | adantr | |
9 | lmodgrp | |
|
10 | 9 | adantr | |
11 | 1 2 3 4 | lmodvscl | |
12 | 11 | 3expa | |
13 | 12 | an32s | |
14 | eqid | |
|
15 | 13 14 | fmptd | |
16 | simpll | |
|
17 | simprl | |
|
18 | simprr | |
|
19 | simplr | |
|
20 | 1 6 2 3 4 5 | lmodvsdir | |
21 | 16 17 18 19 20 | syl13anc | |
22 | 14 | a1i | |
23 | simpr | |
|
24 | 23 | oveq1d | |
25 | 2 4 5 | lmodacl | |
26 | 25 | 3expb | |
27 | 26 | adantlr | |
28 | ovexd | |
|
29 | 22 24 27 28 | fvmptd | |
30 | simpr | |
|
31 | 30 | oveq1d | |
32 | ovexd | |
|
33 | 22 31 17 32 | fvmptd | |
34 | simpr | |
|
35 | 34 | oveq1d | |
36 | ovexd | |
|
37 | 22 35 18 36 | fvmptd | |
38 | 33 37 | oveq12d | |
39 | 21 29 38 | 3eqtr4d | |
40 | 4 1 5 6 8 10 15 39 | isghmd | |