Metamath Proof Explorer


Theorem lmodvslmhm

Description: Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023)

Ref Expression
Hypotheses lmodvslmhm.v V=BaseW
lmodvslmhm.f F=ScalarW
lmodvslmhm.s ·˙=W
lmodvslmhm.k K=BaseF
Assertion lmodvslmhm WLModYVxKx·˙YFGrpHomW

Proof

Step Hyp Ref Expression
1 lmodvslmhm.v V=BaseW
2 lmodvslmhm.f F=ScalarW
3 lmodvslmhm.s ·˙=W
4 lmodvslmhm.k K=BaseF
5 eqid +F=+F
6 eqid +W=+W
7 2 lmodfgrp WLModFGrp
8 7 adantr WLModYVFGrp
9 lmodgrp WLModWGrp
10 9 adantr WLModYVWGrp
11 1 2 3 4 lmodvscl WLModxKYVx·˙YV
12 11 3expa WLModxKYVx·˙YV
13 12 an32s WLModYVxKx·˙YV
14 eqid xKx·˙Y=xKx·˙Y
15 13 14 fmptd WLModYVxKx·˙Y:KV
16 simpll WLModYViKjKWLMod
17 simprl WLModYViKjKiK
18 simprr WLModYViKjKjK
19 simplr WLModYViKjKYV
20 1 6 2 3 4 5 lmodvsdir WLModiKjKYVi+Fj·˙Y=i·˙Y+Wj·˙Y
21 16 17 18 19 20 syl13anc WLModYViKjKi+Fj·˙Y=i·˙Y+Wj·˙Y
22 14 a1i WLModYViKjKxKx·˙Y=xKx·˙Y
23 simpr WLModYViKjKx=i+Fjx=i+Fj
24 23 oveq1d WLModYViKjKx=i+Fjx·˙Y=i+Fj·˙Y
25 2 4 5 lmodacl WLModiKjKi+FjK
26 25 3expb WLModiKjKi+FjK
27 26 adantlr WLModYViKjKi+FjK
28 ovexd WLModYViKjKi+Fj·˙YV
29 22 24 27 28 fvmptd WLModYViKjKxKx·˙Yi+Fj=i+Fj·˙Y
30 simpr WLModYViKjKx=ix=i
31 30 oveq1d WLModYViKjKx=ix·˙Y=i·˙Y
32 ovexd WLModYViKjKi·˙YV
33 22 31 17 32 fvmptd WLModYViKjKxKx·˙Yi=i·˙Y
34 simpr WLModYViKjKx=jx=j
35 34 oveq1d WLModYViKjKx=jx·˙Y=j·˙Y
36 ovexd WLModYViKjKj·˙YV
37 22 35 18 36 fvmptd WLModYViKjKxKx·˙Yj=j·˙Y
38 33 37 oveq12d WLModYViKjKxKx·˙Yi+WxKx·˙Yj=i·˙Y+Wj·˙Y
39 21 29 38 3eqtr4d WLModYViKjKxKx·˙Yi+Fj=xKx·˙Yi+WxKx·˙Yj
40 4 1 5 6 8 10 15 39 isghmd WLModYVxKx·˙YFGrpHomW