Metamath Proof Explorer


Theorem lncvrelatN

Description: A lattice element covered by a line is an atom. (Contributed by NM, 28-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lncvrelat.b B=BaseK
lncvrelat.c C=K
lncvrelat.a A=AtomsK
lncvrelat.n N=LinesK
lncvrelat.m M=pmapK
Assertion lncvrelatN KHLXBPBMXNPCXPA

Proof

Step Hyp Ref Expression
1 lncvrelat.b B=BaseK
2 lncvrelat.c C=K
3 lncvrelat.a A=AtomsK
4 lncvrelat.n N=LinesK
5 lncvrelat.m M=pmapK
6 hllat KHLKLat
7 6 3ad2ant1 KHLXBPBKLat
8 eqid joinK=joinK
9 8 3 4 5 isline2 KLatMXNqArAqrMX=MqjoinKr
10 7 9 syl KHLXBPBMXNqArAqrMX=MqjoinKr
11 simpll1 KHLXBPBqArAqrKHL
12 simpll2 KHLXBPBqArAqrXB
13 11 6 syl KHLXBPBqArAqrKLat
14 simplrl KHLXBPBqArAqrqA
15 1 3 atbase qAqB
16 14 15 syl KHLXBPBqArAqrqB
17 simplrr KHLXBPBqArAqrrA
18 1 3 atbase rArB
19 17 18 syl KHLXBPBqArAqrrB
20 1 8 latjcl KLatqBrBqjoinKrB
21 13 16 19 20 syl3anc KHLXBPBqArAqrqjoinKrB
22 1 5 pmap11 KHLXBqjoinKrBMX=MqjoinKrX=qjoinKr
23 11 12 21 22 syl3anc KHLXBPBqArAqrMX=MqjoinKrX=qjoinKr
24 breq2 X=qjoinKrPCXPCqjoinKr
25 24 biimpd X=qjoinKrPCXPCqjoinKr
26 11 adantr KHLXBPBqArAqrPCqjoinKrKHL
27 simpll3 KHLXBPBqArAqrPB
28 27 14 17 3jca KHLXBPBqArAqrPBqArA
29 28 adantr KHLXBPBqArAqrPCqjoinKrPBqArA
30 simplr KHLXBPBqArAqrPCqjoinKrqr
31 simpr KHLXBPBqArAqrPCqjoinKrPCqjoinKr
32 1 8 2 3 cvrat2 KHLPBqArAqrPCqjoinKrPA
33 26 29 30 31 32 syl112anc KHLXBPBqArAqrPCqjoinKrPA
34 33 ex KHLXBPBqArAqrPCqjoinKrPA
35 25 34 syl9r KHLXBPBqArAqrX=qjoinKrPCXPA
36 23 35 sylbid KHLXBPBqArAqrMX=MqjoinKrPCXPA
37 36 expimpd KHLXBPBqArAqrMX=MqjoinKrPCXPA
38 37 rexlimdvva KHLXBPBqArAqrMX=MqjoinKrPCXPA
39 10 38 sylbid KHLXBPBMXNPCXPA
40 39 imp32 KHLXBPBMXNPCXPA