Metamath Proof Explorer


Theorem lnfnaddi

Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnfnl.1 T LinFn
Assertion lnfnaddi A B T A + B = T A + T B

Proof

Step Hyp Ref Expression
1 lnfnl.1 T LinFn
2 ax-1cn 1
3 1 lnfnli 1 A B T 1 A + B = 1 T A + T B
4 2 3 mp3an1 A B T 1 A + B = 1 T A + T B
5 ax-hvmulid A 1 A = A
6 5 fvoveq1d A T 1 A + B = T A + B
7 6 adantr A B T 1 A + B = T A + B
8 1 lnfnfi T :
9 8 ffvelrni A T A
10 9 mulid2d A 1 T A = T A
11 10 adantr A B 1 T A = T A
12 11 oveq1d A B 1 T A + T B = T A + T B
13 4 7 12 3eqtr3d A B T A + B = T A + T B