Metamath Proof Explorer


Theorem lnopaddi

Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1 TLinOp
Assertion lnopaddi ABTA+B=TA+TB

Proof

Step Hyp Ref Expression
1 lnopl.1 TLinOp
2 ax-1cn 1
3 1 lnopli 1ABT1A+B=1TA+TB
4 2 3 mp3an1 ABT1A+B=1TA+TB
5 ax-hvmulid A1A=A
6 5 fvoveq1d AT1A+B=TA+B
7 6 adantr ABT1A+B=TA+B
8 1 lnopfi T:
9 8 ffvelcdmi ATA
10 ax-hvmulid TA1TA=TA
11 9 10 syl A1TA=TA
12 11 adantr AB1TA=TA
13 12 oveq1d AB1TA+TB=TA+TB
14 4 7 13 3eqtr3d ABTA+B=TA+TB