Metamath Proof Explorer


Theorem lnopmul

Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion lnopmul TLinOpABTAB=ATB

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 lnopl TLinOpAB0TAB+0=ATB+T0
3 1 2 mpanr2 TLinOpABTAB+0=ATB+T0
4 3 3impa TLinOpABTAB+0=ATB+T0
5 hvmulcl ABAB
6 ax-hvaddid ABAB+0=AB
7 5 6 syl ABAB+0=AB
8 7 3adant1 TLinOpABAB+0=AB
9 8 fveq2d TLinOpABTAB+0=TAB
10 lnop0 TLinOpT0=0
11 10 oveq2d TLinOpATB+T0=ATB+0
12 11 3ad2ant1 TLinOpABATB+T0=ATB+0
13 lnopf TLinOpT:
14 13 ffvelcdmda TLinOpBTB
15 hvmulcl ATBATB
16 14 15 sylan2 ATLinOpBATB
17 16 3impb ATLinOpBATB
18 17 3com12 TLinOpABATB
19 ax-hvaddid ATBATB+0=ATB
20 18 19 syl TLinOpABATB+0=ATB
21 12 20 eqtrd TLinOpABATB+T0=ATB
22 4 9 21 3eqtr3d TLinOpABTAB=ATB