Metamath Proof Explorer


Theorem lnosub

Description: Subtraction property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnosub.1 X=BaseSetU
lnosub.5 M=-vU
lnosub.6 N=-vW
lnosub.7 L=ULnOpW
Assertion lnosub UNrmCVecWNrmCVecTLAXBXTAMB=TANTB

Proof

Step Hyp Ref Expression
1 lnosub.1 X=BaseSetU
2 lnosub.5 M=-vU
3 lnosub.6 N=-vW
4 lnosub.7 L=ULnOpW
5 neg1cn 1
6 eqid BaseSetW=BaseSetW
7 eqid +vU=+vU
8 eqid +vW=+vW
9 eqid 𝑠OLDU=𝑠OLDU
10 eqid 𝑠OLDW=𝑠OLDW
11 1 6 7 8 9 10 4 lnolin UNrmCVecWNrmCVecTL1BXAXT-1𝑠OLDUB+vUA=-1𝑠OLDWTB+vWTA
12 5 11 mp3anr1 UNrmCVecWNrmCVecTLBXAXT-1𝑠OLDUB+vUA=-1𝑠OLDWTB+vWTA
13 12 ancom2s UNrmCVecWNrmCVecTLAXBXT-1𝑠OLDUB+vUA=-1𝑠OLDWTB+vWTA
14 1 7 9 2 nvmval2 UNrmCVecAXBXAMB=-1𝑠OLDUB+vUA
15 14 3expb UNrmCVecAXBXAMB=-1𝑠OLDUB+vUA
16 15 3ad2antl1 UNrmCVecWNrmCVecTLAXBXAMB=-1𝑠OLDUB+vUA
17 16 fveq2d UNrmCVecWNrmCVecTLAXBXTAMB=T-1𝑠OLDUB+vUA
18 simpl2 UNrmCVecWNrmCVecTLAXBXWNrmCVec
19 1 6 4 lnof UNrmCVecWNrmCVecTLT:XBaseSetW
20 simpl AXBXAX
21 ffvelcdm T:XBaseSetWAXTABaseSetW
22 19 20 21 syl2an UNrmCVecWNrmCVecTLAXBXTABaseSetW
23 simpr AXBXBX
24 ffvelcdm T:XBaseSetWBXTBBaseSetW
25 19 23 24 syl2an UNrmCVecWNrmCVecTLAXBXTBBaseSetW
26 6 8 10 3 nvmval2 WNrmCVecTABaseSetWTBBaseSetWTANTB=-1𝑠OLDWTB+vWTA
27 18 22 25 26 syl3anc UNrmCVecWNrmCVecTLAXBXTANTB=-1𝑠OLDWTB+vWTA
28 13 17 27 3eqtr4d UNrmCVecWNrmCVecTLAXBXTAMB=TANTB