Metamath Proof Explorer


Theorem lo1res

Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion lo1res F𝑂1FA𝑂1

Proof

Step Hyp Ref Expression
1 lo1f F𝑂1F:domF
2 lo1bdd F𝑂1F:domFxmydomFxyFym
3 1 2 mpdan F𝑂1xmydomFxyFym
4 inss1 domFAdomF
5 ssralv domFAdomFydomFxyFymydomFAxyFym
6 4 5 ax-mp ydomFxyFymydomFAxyFym
7 elinel2 ydomFAyA
8 7 fvresd ydomFAFAy=Fy
9 8 breq1d ydomFAFAymFym
10 9 imbi2d ydomFAxyFAymxyFym
11 10 ralbiia ydomFAxyFAymydomFAxyFym
12 6 11 sylibr ydomFxyFymydomFAxyFAym
13 12 reximi mydomFxyFymmydomFAxyFAym
14 13 reximi xmydomFxyFymxmydomFAxyFAym
15 3 14 syl F𝑂1xmydomFAxyFAym
16 fssres F:domFdomFAdomFFdomFA:domFA
17 1 4 16 sylancl F𝑂1FdomFA:domFA
18 resres FdomFA=FdomFA
19 ffn F:domFFFndomF
20 fnresdm FFndomFFdomF=F
21 1 19 20 3syl F𝑂1FdomF=F
22 21 reseq1d F𝑂1FdomFA=FA
23 18 22 eqtr3id F𝑂1FdomFA=FA
24 23 feq1d F𝑂1FdomFA:domFAFA:domFA
25 17 24 mpbid F𝑂1FA:domFA
26 lo1dm F𝑂1domF
27 4 26 sstrid F𝑂1domFA
28 ello12 FA:domFAdomFAFA𝑂1xmydomFAxyFAym
29 25 27 28 syl2anc F𝑂1FA𝑂1xmydomFAxyFAym
30 15 29 mpbird F𝑂1FA𝑂1