Metamath Proof Explorer


Theorem log2ublem2

Description: Lemma for log2ub . (Contributed by Mario Carneiro, 17-Apr-2015)

Ref Expression
Hypotheses log2ublem2.1 3757n=0K232n+19n2B
log2ublem2.2 B0
log2ublem2.3 F0
log2ublem2.4 N0
log2ublem2.5 N1=K
log2ublem2.6 B+F=G
log2ublem2.7 M0
log2ublem2.8 M+N=3
log2ublem2.9 579M=2 N+1F
Assertion log2ublem2 3757n=0N232n+19n2G

Proof

Step Hyp Ref Expression
1 log2ublem2.1 3757n=0K232n+19n2B
2 log2ublem2.2 B0
3 log2ublem2.3 F0
4 log2ublem2.4 N0
5 log2ublem2.5 N1=K
6 log2ublem2.6 B+F=G
7 log2ublem2.7 M0
8 log2ublem2.8 M+N=3
9 log2ublem2.9 579M=2 N+1F
10 fzfid 0KFin
11 elfznn0 n0Kn0
12 11 adantl n0Kn0
13 2re 2
14 3nn 3
15 2nn0 20
16 nn0mulcl 20n02n0
17 15 16 mpan n02n0
18 nn0p1nn 2n02n+1
19 17 18 syl n02n+1
20 nnmulcl 32n+132n+1
21 14 19 20 sylancr n032n+1
22 9nn 9
23 nnexpcl 9n09n
24 22 23 mpan n09n
25 21 24 nnmulcld n032n+19n
26 nndivre 232n+19n232n+19n
27 13 25 26 sylancr n0232n+19n
28 12 27 syl n0K232n+19n
29 10 28 fsumrecl n=0K232n+19n
30 29 mptru n=0K232n+19n
31 15 4 nn0mulcli 2 N0
32 nn0p1nn 2 N02 N+1
33 31 32 ax-mp 2 N+1
34 14 33 nnmulcli 32 N+1
35 nnexpcl 9N09N
36 22 4 35 mp2an 9N
37 34 36 nnmulcli 32 N+19N
38 15 2 nn0mulcli 2B0
39 15 3 nn0mulcli 2F0
40 nn0uz 0=0
41 4 40 eleqtri N0
42 41 a1i N0
43 elfznn0 n0Nn0
44 43 adantl n0Nn0
45 27 recnd n0232n+19n
46 44 45 syl n0N232n+19n
47 oveq2 n=N2n=2 N
48 47 oveq1d n=N2n+1=2 N+1
49 48 oveq2d n=N32n+1=32 N+1
50 oveq2 n=N9n=9N
51 49 50 oveq12d n=N32n+19n=32 N+19N
52 51 oveq2d n=N232n+19n=232 N+19N
53 42 46 52 fsumm1 n=0N232n+19n=n=0N1232n+19n+232 N+19N
54 53 mptru n=0N232n+19n=n=0N1232n+19n+232 N+19N
55 5 oveq2i 0N1=0K
56 55 sumeq1i n=0N1232n+19n=n=0K232n+19n
57 56 oveq1i n=0N1232n+19n+232 N+19N=n=0K232n+19n+232 N+19N
58 54 57 eqtri n=0N232n+19n=n=0K232n+19n+232 N+19N
59 2cn 2
60 2 nn0cni B
61 3 nn0cni F
62 59 60 61 adddii 2B+F=2B+2F
63 6 oveq2i 2B+F=2G
64 62 63 eqtr3i 2B+2F=2G
65 7nn 7
66 65 nnnn0i 70
67 nnexpcl 37037
68 14 66 67 mp2an 37
69 5nn 5
70 69 65 nnmulcli 57
71 68 70 nnmulcli 3757
72 71 nnrei 3757
73 72 13 remulcli 37572
74 73 leidi 3757237572
75 14 nnnn0i 30
76 nnexpcl 93093
77 22 75 76 mp2an 93
78 77 nncni 93
79 70 nncni 57
80 78 79 mulcomi 9357=5793
81 7 nn0cni M
82 4 nn0cni N
83 81 82 addcomi M+N=N+M
84 8 83 eqtr3i 3=N+M
85 84 oveq2i 93=9N+M
86 22 nncni 9
87 expadd 9N0M09N+M=9N9M
88 86 4 7 87 mp3an 9N+M=9N9M
89 85 88 eqtri 93=9N9M
90 89 oveq2i 5793=579N9M
91 36 nncni 9N
92 nnexpcl 9M09M
93 22 7 92 mp2an 9M
94 93 nncni 9M
95 79 91 94 mul12i 579N9M=9N579M
96 80 90 95 3eqtri 9357=9N579M
97 9 oveq2i 9N579M=9N2 N+1F
98 96 97 eqtri 9357=9N2 N+1F
99 98 oveq2i 39357=39N2 N+1F
100 df-7 7=6+1
101 100 oveq2i 37=36+1
102 3cn 3
103 6nn0 60
104 expp1 36036+1=363
105 102 103 104 mp2an 36+1=363
106 expmul 32030323=323
107 102 15 75 106 mp3an 323=323
108 59 102 mulcomi 23=32
109 3t2e6 32=6
110 108 109 eqtri 23=6
111 110 oveq2i 323=36
112 sq3 32=9
113 112 oveq1i 323=93
114 107 111 113 3eqtr3i 36=93
115 114 oveq1i 363=933
116 105 115 eqtri 36+1=933
117 78 102 mulcomi 933=393
118 101 116 117 3eqtri 37=393
119 118 oveq1i 3757=39357
120 102 78 79 mulassi 39357=39357
121 119 120 eqtri 3757=39357
122 33 nncni 2 N+1
123 102 122 91 mul32i 32 N+19N=39N2 N+1
124 123 oveq1i 32 N+19NF=39N2 N+1F
125 102 91 mulcli 39N
126 125 122 61 mulassi 39N2 N+1F=39N2 N+1F
127 122 61 mulcli 2 N+1F
128 102 91 127 mulassi 39N2 N+1F=39N2 N+1F
129 124 126 128 3eqtri 32 N+19NF=39N2 N+1F
130 99 121 129 3eqtr4i 3757=32 N+19NF
131 130 oveq2i 23757=232 N+19NF
132 68 nncni 37
133 132 79 mulcli 3757
134 133 59 mulcomi 37572=23757
135 37 nncni 32 N+19N
136 135 59 61 mul12i 32 N+19N2F=232 N+19NF
137 131 134 136 3eqtr4i 37572=32 N+19N2F
138 74 137 breqtri 3757232 N+19N2F
139 1 30 15 37 38 39 58 64 138 log2ublem1 3757n=0N232n+19n2G