| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpadlen.1 |
|
| 2 |
|
lpadlen.2 |
|
| 3 |
|
lpadlen.3 |
|
| 4 |
|
lpadright.1 |
|
| 5 |
|
lpadright.2 |
|
| 6 |
1 2 3
|
lpadval |
|
| 7 |
6
|
fveq1d |
|
| 8 |
|
eqeq2 |
|
| 9 |
|
eqeq2 |
|
| 10 |
1
|
adantr |
|
| 11 |
2
|
adantr |
|
| 12 |
3
|
adantr |
|
| 13 |
|
simpr |
|
| 14 |
10 11 12 13
|
lpadlem3 |
|
| 15 |
14
|
fveq2d |
|
| 16 |
|
hash0 |
|
| 17 |
15 16
|
eqtrdi |
|
| 18 |
1
|
adantr |
|
| 19 |
2
|
adantr |
|
| 20 |
3
|
adantr |
|
| 21 |
|
lencl |
|
| 22 |
2 21
|
syl |
|
| 23 |
22
|
nn0red |
|
| 24 |
23
|
adantr |
|
| 25 |
1
|
nn0red |
|
| 26 |
25
|
adantr |
|
| 27 |
23 25
|
ltnled |
|
| 28 |
27
|
biimpar |
|
| 29 |
24 26 28
|
ltled |
|
| 30 |
18 19 20 29
|
lpadlem2 |
|
| 31 |
8 9 17 30
|
ifbothda |
|
| 32 |
31 4
|
eqtr4d |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
fveq2d |
|
| 35 |
3
|
lpadlem1 |
|
| 36 |
|
ccatval3 |
|
| 37 |
35 2 5 36
|
syl3anc |
|
| 38 |
7 34 37
|
3eqtr2d |
|