| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpadlen.1 | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 2 |  | lpadlen.2 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 3 |  | lpadlen.3 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 4 |  | lpadright.1 | ⊢ ( 𝜑  →  𝑀  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 5 |  | lpadright.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 6 | 1 2 3 | lpadval | ⊢ ( 𝜑  →  ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 )  =  ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 ) ‘ ( 𝑁  +  𝑀 ) )  =  ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ‘ ( 𝑁  +  𝑀 ) ) ) | 
						
							| 8 |  | eqeq2 | ⊢ ( 0  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  0  ↔  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 9 |  | eqeq2 | ⊢ ( ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) )  ↔  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐶  ∈  𝑆 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 14 | 10 11 12 13 | lpadlem3 | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  =  ∅ ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 16 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  0 ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℕ0 ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑊  ∈  Word  𝑆 ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐶  ∈  𝑆 ) | 
						
							| 21 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑆  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | nn0red | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 25 | 1 | nn0red | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 27 | 23 25 | ltnled | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  <  𝐿  ↔  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 28 | 27 | biimpar | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  <  𝐿 ) | 
						
							| 29 | 24 26 28 | ltled | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ≤  𝐿 ) | 
						
							| 30 | 18 19 20 29 | lpadlem2 | ⊢ ( ( 𝜑  ∧  ¬  𝐿  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 | 8 9 17 30 | ifbothda | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  if ( 𝐿  ≤  ( ♯ ‘ 𝑊 ) ,  0 ,  ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 31 4 | eqtr4d | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) )  =  𝑀 ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝜑  →  ( 𝑁  +  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝜑  →  ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ‘ ( 𝑁  +  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) ) )  =  ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ‘ ( 𝑁  +  𝑀 ) ) ) | 
						
							| 35 | 3 | lpadlem1 | ⊢ ( 𝜑  →  ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ∈  Word  𝑆 ) | 
						
							| 36 |  | ccatval3 | ⊢ ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ∈  Word  𝑆  ∧  𝑊  ∈  Word  𝑆  ∧  𝑁  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ‘ ( 𝑁  +  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 37 | 35 2 5 36 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } )  ++  𝑊 ) ‘ ( 𝑁  +  ( ♯ ‘ ( ( 0 ..^ ( 𝐿  −  ( ♯ ‘ 𝑊 ) ) )  ×  { 𝐶 } ) ) ) )  =  ( 𝑊 ‘ 𝑁 ) ) | 
						
							| 38 | 7 34 37 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( ( 𝐶  leftpad  𝑊 ) ‘ 𝐿 ) ‘ ( 𝑁  +  𝑀 ) )  =  ( 𝑊 ‘ 𝑁 ) ) |