Metamath Proof Explorer


Theorem lplncmp

Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012)

Ref Expression
Hypotheses lplncmp.l ˙=K
lplncmp.p P=LPlanesK
Assertion lplncmp KHLXPYPX˙YX=Y

Proof

Step Hyp Ref Expression
1 lplncmp.l ˙=K
2 lplncmp.p P=LPlanesK
3 simp2 KHLXPYPXP
4 simp1 KHLXPYPKHL
5 eqid BaseK=BaseK
6 5 2 lplnbase XPXBaseK
7 6 3ad2ant2 KHLXPYPXBaseK
8 eqid K=K
9 eqid LLinesK=LLinesK
10 5 8 9 2 islpln4 KHLXBaseKXPzLLinesKzKX
11 4 7 10 syl2anc KHLXPYPXPzLLinesKzKX
12 3 11 mpbid KHLXPYPzLLinesKzKX
13 simpr3 KHLXPYPzLLinesKzKXX˙YX˙Y
14 hlpos KHLKPoset
15 14 3ad2ant1 KHLXPYPKPoset
16 15 adantr KHLXPYPzLLinesKzKXX˙YKPoset
17 7 adantr KHLXPYPzLLinesKzKXX˙YXBaseK
18 simpl3 KHLXPYPzLLinesKzKXX˙YYP
19 5 2 lplnbase YPYBaseK
20 18 19 syl KHLXPYPzLLinesKzKXX˙YYBaseK
21 simpr1 KHLXPYPzLLinesKzKXX˙YzLLinesK
22 5 9 llnbase zLLinesKzBaseK
23 21 22 syl KHLXPYPzLLinesKzKXX˙YzBaseK
24 simpr2 KHLXPYPzLLinesKzKXX˙YzKX
25 simpl1 KHLXPYPzLLinesKzKXX˙YKHL
26 5 1 8 cvrle KHLzBaseKXBaseKzKXz˙X
27 25 23 17 24 26 syl31anc KHLXPYPzLLinesKzKXX˙Yz˙X
28 5 1 postr KPosetzBaseKXBaseKYBaseKz˙XX˙Yz˙Y
29 16 23 17 20 28 syl13anc KHLXPYPzLLinesKzKXX˙Yz˙XX˙Yz˙Y
30 27 13 29 mp2and KHLXPYPzLLinesKzKXX˙Yz˙Y
31 1 8 9 2 llncvrlpln2 KHLzLLinesKYPz˙YzKY
32 25 21 18 30 31 syl31anc KHLXPYPzLLinesKzKXX˙YzKY
33 5 1 8 cvrcmp KPosetXBaseKYBaseKzBaseKzKXzKYX˙YX=Y
34 16 17 20 23 24 32 33 syl132anc KHLXPYPzLLinesKzKXX˙YX˙YX=Y
35 13 34 mpbid KHLXPYPzLLinesKzKXX˙YX=Y
36 35 3exp2 KHLXPYPzLLinesKzKXX˙YX=Y
37 36 rexlimdv KHLXPYPzLLinesKzKXX˙YX=Y
38 12 37 mpd KHLXPYPX˙YX=Y
39 5 1 posref KPosetXBaseKX˙X
40 15 7 39 syl2anc KHLXPYPX˙X
41 breq2 X=YX˙XX˙Y
42 40 41 syl5ibcom KHLXPYPX=YX˙Y
43 38 42 impbid KHLXPYPX˙YX=Y