Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 24-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lplncmp.l | |
|
lplncmp.p | |
||
Assertion | lplncmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplncmp.l | |
|
2 | lplncmp.p | |
|
3 | simp2 | |
|
4 | simp1 | |
|
5 | eqid | |
|
6 | 5 2 | lplnbase | |
7 | 6 | 3ad2ant2 | |
8 | eqid | |
|
9 | eqid | |
|
10 | 5 8 9 2 | islpln4 | |
11 | 4 7 10 | syl2anc | |
12 | 3 11 | mpbid | |
13 | simpr3 | |
|
14 | hlpos | |
|
15 | 14 | 3ad2ant1 | |
16 | 15 | adantr | |
17 | 7 | adantr | |
18 | simpl3 | |
|
19 | 5 2 | lplnbase | |
20 | 18 19 | syl | |
21 | simpr1 | |
|
22 | 5 9 | llnbase | |
23 | 21 22 | syl | |
24 | simpr2 | |
|
25 | simpl1 | |
|
26 | 5 1 8 | cvrle | |
27 | 25 23 17 24 26 | syl31anc | |
28 | 5 1 | postr | |
29 | 16 23 17 20 28 | syl13anc | |
30 | 27 13 29 | mp2and | |
31 | 1 8 9 2 | llncvrlpln2 | |
32 | 25 21 18 30 31 | syl31anc | |
33 | 5 1 8 | cvrcmp | |
34 | 16 17 20 23 24 32 33 | syl132anc | |
35 | 13 34 | mpbid | |
36 | 35 | 3exp2 | |
37 | 36 | rexlimdv | |
38 | 12 37 | mpd | |
39 | 5 1 | posref | |
40 | 15 7 39 | syl2anc | |
41 | breq2 | |
|
42 | 40 41 | syl5ibcom | |
43 | 38 42 | impbid | |