Metamath Proof Explorer


Theorem lplnn0N

Description: A lattice plane is nonzero. (Contributed by NM, 15-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lplnn0.z 0˙=0.K
lplnn0.p P=LPlanesK
Assertion lplnn0N KHLXPX0˙

Proof

Step Hyp Ref Expression
1 lplnn0.z 0˙=0.K
2 lplnn0.p P=LPlanesK
3 eqid AtomsK=AtomsK
4 3 atex KHLAtomsK
5 n0 AtomsKppAtomsK
6 4 5 sylib KHLppAtomsK
7 6 adantr KHLXPppAtomsK
8 eqid K=K
9 8 3 2 lplnnleat KHLXPpAtomsK¬XKp
10 9 3expa KHLXPpAtomsK¬XKp
11 hlop KHLKOP
12 11 ad2antrr KHLXPpAtomsKKOP
13 eqid BaseK=BaseK
14 13 3 atbase pAtomsKpBaseK
15 14 adantl KHLXPpAtomsKpBaseK
16 13 8 1 op0le KOPpBaseK0˙Kp
17 12 15 16 syl2anc KHLXPpAtomsK0˙Kp
18 breq1 X=0˙XKp0˙Kp
19 17 18 syl5ibrcom KHLXPpAtomsKX=0˙XKp
20 19 necon3bd KHLXPpAtomsK¬XKpX0˙
21 10 20 mpd KHLXPpAtomsKX0˙
22 7 21 exlimddv KHLXPX0˙