Metamath Proof Explorer


Theorem lptioo2cn

Description: The upper bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo2cn.1 J=TopOpenfld
lptioo2cn.2 φA*
lptioo2cn.3 φB
lptioo2cn.4 φA<B
Assertion lptioo2cn φBlimPtJAB

Proof

Step Hyp Ref Expression
1 lptioo2cn.1 J=TopOpenfld
2 lptioo2cn.2 φA*
3 lptioo2cn.3 φB
4 lptioo2cn.4 φA<B
5 eqid topGenran.=topGenran.
6 5 2 3 4 lptioo2 φBlimPttopGenran.AB
7 eqid TopOpenfld=TopOpenfld
8 7 cnfldtop TopOpenfldTop
9 ax-resscn
10 unicntop =TopOpenfld
11 9 10 sseqtri TopOpenfld
12 ioossre AB
13 eqid TopOpenfld=TopOpenfld
14 7 tgioo2 topGenran.=TopOpenfld𝑡
15 13 14 restlp TopOpenfldTopTopOpenfldABlimPttopGenran.AB=limPtTopOpenfldAB
16 8 11 12 15 mp3an limPttopGenran.AB=limPtTopOpenfldAB
17 6 16 eleqtrdi φBlimPtTopOpenfldAB
18 elin BlimPtTopOpenfldABBlimPtTopOpenfldABB
19 17 18 sylib φBlimPtTopOpenfldABB
20 19 simpld φBlimPtTopOpenfldAB
21 1 eqcomi TopOpenfld=J
22 21 fveq2i limPtTopOpenfld=limPtJ
23 22 fveq1i limPtTopOpenfldAB=limPtJAB
24 20 23 eleqtrdi φBlimPtJAB