Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lptioo2.1 | |
|
lptioo2.2 | |
||
lptioo2.3 | |
||
lptioo2.4 | |
||
Assertion | lptioo2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lptioo2.1 | |
|
2 | lptioo2.2 | |
|
3 | lptioo2.3 | |
|
4 | lptioo2.4 | |
|
5 | difssd | |
|
6 | simpr | |
|
7 | ubioo | |
|
8 | eleq1 | |
|
9 | 8 | biimpcd | |
10 | 7 9 | mtoi | |
11 | 10 | adantl | |
12 | velsn | |
|
13 | 11 12 | sylnibr | |
14 | 6 13 | eldifd | |
15 | 5 14 | eqelssd | |
16 | 15 | ineq2d | |
17 | 16 | ad2antrr | |
18 | simplrl | |
|
19 | simplrr | |
|
20 | 2 | ad2antrr | |
21 | elioo3g | |
|
22 | 21 | biimpi | |
23 | 22 | simpld | |
24 | 23 | simp3d | |
25 | 24 | adantl | |
26 | iooin | |
|
27 | 18 19 20 25 26 | syl22anc | |
28 | iftrue | |
|
29 | 28 | adantl | |
30 | 4 | ad3antrrr | |
31 | 29 30 | eqbrtrd | |
32 | iffalse | |
|
33 | 32 | adantl | |
34 | 22 | simprd | |
35 | 34 | simpld | |
36 | 35 | ad2antlr | |
37 | 33 36 | eqbrtrd | |
38 | 31 37 | pm2.61dan | |
39 | 34 | simprd | |
40 | 23 | simp2d | |
41 | xrltnle | |
|
42 | 24 40 41 | syl2anc | |
43 | 39 42 | mpbid | |
44 | iffalse | |
|
45 | 43 44 | syl | |
46 | 45 | eqcomd | |
47 | 46 | adantl | |
48 | 38 47 | breqtrd | |
49 | 20 18 | ifcld | |
50 | 47 25 | eqeltrrd | |
51 | ioon0 | |
|
52 | 49 50 51 | syl2anc | |
53 | 48 52 | mpbird | |
54 | 27 53 | eqnetrd | |
55 | 17 54 | eqnetrd | |
56 | 55 | ex | |
57 | 56 | ralrimivva | |
58 | ioossre | |
|
59 | 58 | a1i | |
60 | 1 59 3 | islptre | |
61 | 57 60 | mpbird | |