Metamath Proof Explorer


Theorem lptioo2

Description: The upper bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo2.1 J=topGenran.
lptioo2.2 φA*
lptioo2.3 φB
lptioo2.4 φA<B
Assertion lptioo2 φBlimPtJAB

Proof

Step Hyp Ref Expression
1 lptioo2.1 J=topGenran.
2 lptioo2.2 φA*
3 lptioo2.3 φB
4 lptioo2.4 φA<B
5 difssd φABBAB
6 simpr φxABxAB
7 ubioo ¬BAB
8 eleq1 x=BxABBAB
9 8 biimpcd xABx=BBAB
10 7 9 mtoi xAB¬x=B
11 10 adantl φxAB¬x=B
12 velsn xBx=B
13 11 12 sylnibr φxAB¬xB
14 6 13 eldifd φxABxABB
15 5 14 eqelssd φABB=AB
16 15 ineq2d φabABB=abAB
17 16 ad2antrr φa*b*BababABB=abAB
18 simplrl φa*b*Baba*
19 simplrr φa*b*Babb*
20 2 ad2antrr φa*b*BabA*
21 elioo3g Baba*b*B*a<BB<b
22 21 biimpi Baba*b*B*a<BB<b
23 22 simpld Baba*b*B*
24 23 simp3d BabB*
25 24 adantl φa*b*BabB*
26 iooin a*b*A*B*abAB=ifaAAaifbBbB
27 18 19 20 25 26 syl22anc φa*b*BababAB=ifaAAaifbBbB
28 iftrue aAifaAAa=A
29 28 adantl φa*b*BabaAifaAAa=A
30 4 ad3antrrr φa*b*BabaAA<B
31 29 30 eqbrtrd φa*b*BabaAifaAAa<B
32 iffalse ¬aAifaAAa=a
33 32 adantl φa*b*Bab¬aAifaAAa=a
34 22 simprd Baba<BB<b
35 34 simpld Baba<B
36 35 ad2antlr φa*b*Bab¬aAa<B
37 33 36 eqbrtrd φa*b*Bab¬aAifaAAa<B
38 31 37 pm2.61dan φa*b*BabifaAAa<B
39 34 simprd BabB<b
40 23 simp2d Babb*
41 xrltnle B*b*B<b¬bB
42 24 40 41 syl2anc BabB<b¬bB
43 39 42 mpbid Bab¬bB
44 iffalse ¬bBifbBbB=B
45 43 44 syl BabifbBbB=B
46 45 eqcomd BabB=ifbBbB
47 46 adantl φa*b*BabB=ifbBbB
48 38 47 breqtrd φa*b*BabifaAAa<ifbBbB
49 20 18 ifcld φa*b*BabifaAAa*
50 47 25 eqeltrrd φa*b*BabifbBbB*
51 ioon0 ifaAAa*ifbBbB*ifaAAaifbBbBifaAAa<ifbBbB
52 49 50 51 syl2anc φa*b*BabifaAAaifbBbBifaAAa<ifbBbB
53 48 52 mpbird φa*b*BabifaAAaifbBbB
54 27 53 eqnetrd φa*b*BababAB
55 17 54 eqnetrd φa*b*BababABB
56 55 ex φa*b*BababABB
57 56 ralrimivva φa*b*BababABB
58 ioossre AB
59 58 a1i φAB
60 1 59 3 islptre φBlimPtJABa*b*BababABB
61 57 60 mpbird φBlimPtJAB