Metamath Proof Explorer


Theorem lptioo1

Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo1.1 J = topGen ran .
lptioo1.2 φ A
lptioo1.3 φ B *
lptioo1.4 φ A < B
Assertion lptioo1 φ A limPt J A B

Proof

Step Hyp Ref Expression
1 lptioo1.1 J = topGen ran .
2 lptioo1.2 φ A
3 lptioo1.3 φ B *
4 lptioo1.4 φ A < B
5 difssd φ A B A A B
6 simpr φ x A B x A B
7 lbioo ¬ A A B
8 eleq1 x = A x A B A A B
9 8 biimpcd x A B x = A A A B
10 7 9 mtoi x A B ¬ x = A
11 10 adantl φ x A B ¬ x = A
12 velsn x A x = A
13 11 12 sylnibr φ x A B ¬ x A
14 6 13 eldifd φ x A B x A B A
15 5 14 eqelssd φ A B A = A B
16 15 ineq2d φ a b A B A = a b A B
17 16 ad2antrr φ a * b * A a b a b A B A = a b A B
18 simplrl φ a * b * A a b a *
19 simplrr φ a * b * A a b b *
20 2 rexrd φ A *
21 20 3 jca φ A * B *
22 21 ad2antrr φ a * b * A a b A * B *
23 iooin a * b * A * B * a b A B = if a A A a if b B b B
24 18 19 22 23 syl21anc φ a * b * A a b a b A B = if a A A a if b B b B
25 elioo3g A a b a * b * A * a < A A < b
26 25 biimpi A a b a * b * A * a < A A < b
27 26 simpld A a b a * b * A *
28 27 simp1d A a b a *
29 27 simp3d A a b A *
30 26 simprd A a b a < A A < b
31 30 simpld A a b a < A
32 28 29 31 xrltled A a b a A
33 32 iftrued A a b if a A A a = A
34 33 adantl φ a * b * A a b if a A A a = A
35 30 simprd A a b A < b
36 35 ad2antlr φ a * b * A a b b B A < b
37 iftrue b B if b B b B = b
38 37 eqcomd b B b = if b B b B
39 38 adantl φ a * b * A a b b B b = if b B b B
40 36 39 breqtrd φ a * b * A a b b B A < if b B b B
41 4 ad3antrrr φ a * b * A a b ¬ b B A < B
42 iffalse ¬ b B if b B b B = B
43 42 eqcomd ¬ b B B = if b B b B
44 43 adantl φ a * b * A a b ¬ b B B = if b B b B
45 41 44 breqtrd φ a * b * A a b ¬ b B A < if b B b B
46 40 45 pm2.61dan φ a * b * A a b A < if b B b B
47 34 46 eqbrtrd φ a * b * A a b if a A A a < if b B b B
48 20 ad3antrrr φ a * b * A a b a A A *
49 18 adantr φ a * b * A a b ¬ a A a *
50 48 49 ifclda φ a * b * A a b if a A A a *
51 19 adantr φ a * b * A a b b B b *
52 3 ad3antrrr φ a * b * A a b ¬ b B B *
53 51 52 ifclda φ a * b * A a b if b B b B *
54 ioon0 if a A A a * if b B b B * if a A A a if b B b B if a A A a < if b B b B
55 50 53 54 syl2anc φ a * b * A a b if a A A a if b B b B if a A A a < if b B b B
56 47 55 mpbird φ a * b * A a b if a A A a if b B b B
57 24 56 eqnetrd φ a * b * A a b a b A B
58 17 57 eqnetrd φ a * b * A a b a b A B A
59 58 ex φ a * b * A a b a b A B A
60 59 ralrimivva φ a * b * A a b a b A B A
61 ioossre A B
62 61 a1i φ A B
63 1 62 2 islptre φ A limPt J A B a * b * A a b a b A B A
64 60 63 mpbird φ A limPt J A B