Metamath Proof Explorer


Theorem lsatset

Description: The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lsatset.v V=BaseW
lsatset.n N=LSpanW
lsatset.z 0˙=0W
lsatset.a A=LSAtomsW
Assertion lsatset WXA=ranvV0˙Nv

Proof

Step Hyp Ref Expression
1 lsatset.v V=BaseW
2 lsatset.n N=LSpanW
3 lsatset.z 0˙=0W
4 lsatset.a A=LSAtomsW
5 elex WXWV
6 fveq2 w=WBasew=BaseW
7 6 1 eqtr4di w=WBasew=V
8 fveq2 w=W0w=0W
9 8 3 eqtr4di w=W0w=0˙
10 9 sneqd w=W0w=0˙
11 7 10 difeq12d w=WBasew0w=V0˙
12 fveq2 w=WLSpanw=LSpanW
13 12 2 eqtr4di w=WLSpanw=N
14 13 fveq1d w=WLSpanwv=Nv
15 11 14 mpteq12dv w=WvBasew0wLSpanwv=vV0˙Nv
16 15 rneqd w=WranvBasew0wLSpanwv=ranvV0˙Nv
17 df-lsatoms LSAtoms=wVranvBasew0wLSpanwv
18 2 fvexi NV
19 18 rnex ranNV
20 p0ex V
21 19 20 unex ranNV
22 eqid vV0˙Nv=vV0˙Nv
23 fvrn0 NvranN
24 23 a1i vV0˙NvranN
25 22 24 fmpti vV0˙Nv:V0˙ranN
26 frn vV0˙Nv:V0˙ranNranvV0˙NvranN
27 25 26 ax-mp ranvV0˙NvranN
28 21 27 ssexi ranvV0˙NvV
29 16 17 28 fvmpt WVLSAtomsW=ranvV0˙Nv
30 5 29 syl WXLSAtomsW=ranvV0˙Nv
31 4 30 eqtrid WXA=ranvV0˙Nv