Metamath Proof Explorer


Theorem lsatspn0

Description: The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses lsatspn0.v V=BaseW
lsatspn0.n N=LSpanW
lsatspn0.o 0˙=0W
lsatspn0.a A=LSAtomsW
isateln0.w φWLMod
isateln0.x φXV
Assertion lsatspn0 φNXAX0˙

Proof

Step Hyp Ref Expression
1 lsatspn0.v V=BaseW
2 lsatspn0.n N=LSpanW
3 lsatspn0.o 0˙=0W
4 lsatspn0.a A=LSAtomsW
5 isateln0.w φWLMod
6 isateln0.x φXV
7 5 adantr φNXAWLMod
8 simpr φNXANXA
9 3 4 7 8 lsatn0 φNXANX0˙
10 sneq X=0˙X=0˙
11 10 fveq2d X=0˙NX=N0˙
12 11 adantl φNXAX=0˙NX=N0˙
13 7 adantr φNXAX=0˙WLMod
14 3 2 lspsn0 WLModN0˙=0˙
15 13 14 syl φNXAX=0˙N0˙=0˙
16 12 15 eqtrd φNXAX=0˙NX=0˙
17 16 ex φNXAX=0˙NX=0˙
18 17 necon3d φNXANX0˙X0˙
19 9 18 mpd φNXAX0˙
20 5 adantr φX0˙WLMod
21 6 adantr φX0˙XV
22 simpr φX0˙X0˙
23 eldifsn XV0˙XVX0˙
24 21 22 23 sylanbrc φX0˙XV0˙
25 1 2 3 4 20 24 lsatlspsn φX0˙NXA
26 19 25 impbida φNXAX0˙