Description: Lemma for lshpkrex . Defining property of GX . (Contributed by NM, 15-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpkrlem.v | |
|
lshpkrlem.a | |
||
lshpkrlem.n | |
||
lshpkrlem.p | |
||
lshpkrlem.h | |
||
lshpkrlem.w | |
||
lshpkrlem.u | |
||
lshpkrlem.z | |
||
lshpkrlem.x | |
||
lshpkrlem.e | |
||
lshpkrlem.d | |
||
lshpkrlem.k | |
||
lshpkrlem.t | |
||
lshpkrlem.o | |
||
lshpkrlem.g | |
||
Assertion | lshpkrlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.v | |
|
2 | lshpkrlem.a | |
|
3 | lshpkrlem.n | |
|
4 | lshpkrlem.p | |
|
5 | lshpkrlem.h | |
|
6 | lshpkrlem.w | |
|
7 | lshpkrlem.u | |
|
8 | lshpkrlem.z | |
|
9 | lshpkrlem.x | |
|
10 | lshpkrlem.e | |
|
11 | lshpkrlem.d | |
|
12 | lshpkrlem.k | |
|
13 | lshpkrlem.t | |
|
14 | lshpkrlem.o | |
|
15 | lshpkrlem.g | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lshpsmreu | |
17 | riotasbc | |
|
18 | 16 17 | syl | |
19 | eqeq1 | |
|
20 | 19 | rexbidv | |
21 | 20 | riotabidv | |
22 | oveq1 | |
|
23 | 22 | oveq2d | |
24 | 23 | eqeq2d | |
25 | 24 | rexbidv | |
26 | oveq1 | |
|
27 | 26 | eqeq2d | |
28 | 27 | cbvrexvw | |
29 | 25 28 | bitrdi | |
30 | 29 | cbvriotavw | |
31 | 30 | mpteq2i | |
32 | 15 31 | eqtri | |
33 | riotaex | |
|
34 | 21 32 33 | fvmpt | |
35 | dfsbcq | |
|
36 | 9 34 35 | 3syl | |
37 | 18 36 | mpbird | |
38 | fvex | |
|
39 | oveq1 | |
|
40 | 39 | oveq2d | |
41 | 40 | eqeq2d | |
42 | 41 | rexbidv | |
43 | 38 42 | sbcie | |
44 | 37 43 | sylib | |