Metamath Proof Explorer


Theorem lshpkrlem3

Description: Lemma for lshpkrex . Defining property of GX . (Contributed by NM, 15-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem3 φzUX=z+˙GX·˙Z

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu φ∃!lKzUX=z+˙l·˙Z
17 riotasbc ∃!lKzUX=z+˙l·˙Z[˙ιlK|zUX=z+˙l·˙Z/l]˙zUX=z+˙l·˙Z
18 16 17 syl φ[˙ιlK|zUX=z+˙l·˙Z/l]˙zUX=z+˙l·˙Z
19 eqeq1 x=Xx=z+˙l·˙ZX=z+˙l·˙Z
20 19 rexbidv x=XzUx=z+˙l·˙ZzUX=z+˙l·˙Z
21 20 riotabidv x=XιlK|zUx=z+˙l·˙Z=ιlK|zUX=z+˙l·˙Z
22 oveq1 k=lk·˙Z=l·˙Z
23 22 oveq2d k=ly+˙k·˙Z=y+˙l·˙Z
24 23 eqeq2d k=lx=y+˙k·˙Zx=y+˙l·˙Z
25 24 rexbidv k=lyUx=y+˙k·˙ZyUx=y+˙l·˙Z
26 oveq1 y=zy+˙l·˙Z=z+˙l·˙Z
27 26 eqeq2d y=zx=y+˙l·˙Zx=z+˙l·˙Z
28 27 cbvrexvw yUx=y+˙l·˙ZzUx=z+˙l·˙Z
29 25 28 bitrdi k=lyUx=y+˙k·˙ZzUx=z+˙l·˙Z
30 29 cbvriotavw ιkK|yUx=y+˙k·˙Z=ιlK|zUx=z+˙l·˙Z
31 30 mpteq2i xVιkK|yUx=y+˙k·˙Z=xVιlK|zUx=z+˙l·˙Z
32 15 31 eqtri G=xVιlK|zUx=z+˙l·˙Z
33 riotaex ιlK|zUX=z+˙l·˙ZV
34 21 32 33 fvmpt XVGX=ιlK|zUX=z+˙l·˙Z
35 dfsbcq GX=ιlK|zUX=z+˙l·˙Z[˙GX/l]˙zUX=z+˙l·˙Z[˙ιlK|zUX=z+˙l·˙Z/l]˙zUX=z+˙l·˙Z
36 9 34 35 3syl φ[˙GX/l]˙zUX=z+˙l·˙Z[˙ιlK|zUX=z+˙l·˙Z/l]˙zUX=z+˙l·˙Z
37 18 36 mpbird φ[˙GX/l]˙zUX=z+˙l·˙Z
38 fvex GXV
39 oveq1 l=GXl·˙Z=GX·˙Z
40 39 oveq2d l=GXz+˙l·˙Z=z+˙GX·˙Z
41 40 eqeq2d l=GXX=z+˙l·˙ZX=z+˙GX·˙Z
42 41 rexbidv l=GXzUX=z+˙l·˙ZzUX=z+˙GX·˙Z
43 38 42 sbcie [˙GX/l]˙zUX=z+˙l·˙ZzUX=z+˙GX·˙Z
44 37 43 sylib φzUX=z+˙GX·˙Z