Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmpropd.b1 | |
|
lsmpropd.b2 | |
||
lsmpropd.p | |
||
lsmpropd.v1 | |
||
lsmpropd.v2 | |
||
Assertion | lsmpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmpropd.b1 | |
|
2 | lsmpropd.b2 | |
|
3 | lsmpropd.p | |
|
4 | lsmpropd.v1 | |
|
5 | lsmpropd.v2 | |
|
6 | simp11 | |
|
7 | simp12 | |
|
8 | 7 | elpwid | |
9 | simp2 | |
|
10 | 8 9 | sseldd | |
11 | simp13 | |
|
12 | 11 | elpwid | |
13 | simp3 | |
|
14 | 12 13 | sseldd | |
15 | 6 10 14 3 | syl12anc | |
16 | 15 | mpoeq3dva | |
17 | 16 | rneqd | |
18 | 17 | mpoeq3dva | |
19 | 1 | pweqd | |
20 | mpoeq12 | |
|
21 | 19 19 20 | syl2anc | |
22 | 2 | pweqd | |
23 | mpoeq12 | |
|
24 | 22 22 23 | syl2anc | |
25 | 18 21 24 | 3eqtr3d | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 26 27 28 | lsmfval | |
30 | 4 29 | syl | |
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | 31 32 33 | lsmfval | |
35 | 5 34 | syl | |
36 | 25 30 35 | 3eqtr4d | |