Metamath Proof Explorer


Theorem lsmpropd

Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)

Ref Expression
Hypotheses lsmpropd.b1 φ B = Base K
lsmpropd.b2 φ B = Base L
lsmpropd.p φ x B y B x + K y = x + L y
lsmpropd.v1 φ K V
lsmpropd.v2 φ L W
Assertion lsmpropd φ LSSum K = LSSum L

Proof

Step Hyp Ref Expression
1 lsmpropd.b1 φ B = Base K
2 lsmpropd.b2 φ B = Base L
3 lsmpropd.p φ x B y B x + K y = x + L y
4 lsmpropd.v1 φ K V
5 lsmpropd.v2 φ L W
6 simp11 φ t 𝒫 B u 𝒫 B x t y u φ
7 simp12 φ t 𝒫 B u 𝒫 B x t y u t 𝒫 B
8 7 elpwid φ t 𝒫 B u 𝒫 B x t y u t B
9 simp2 φ t 𝒫 B u 𝒫 B x t y u x t
10 8 9 sseldd φ t 𝒫 B u 𝒫 B x t y u x B
11 simp13 φ t 𝒫 B u 𝒫 B x t y u u 𝒫 B
12 11 elpwid φ t 𝒫 B u 𝒫 B x t y u u B
13 simp3 φ t 𝒫 B u 𝒫 B x t y u y u
14 12 13 sseldd φ t 𝒫 B u 𝒫 B x t y u y B
15 6 10 14 3 syl12anc φ t 𝒫 B u 𝒫 B x t y u x + K y = x + L y
16 15 mpoeq3dva φ t 𝒫 B u 𝒫 B x t , y u x + K y = x t , y u x + L y
17 16 rneqd φ t 𝒫 B u 𝒫 B ran x t , y u x + K y = ran x t , y u x + L y
18 17 mpoeq3dva φ t 𝒫 B , u 𝒫 B ran x t , y u x + K y = t 𝒫 B , u 𝒫 B ran x t , y u x + L y
19 1 pweqd φ 𝒫 B = 𝒫 Base K
20 mpoeq12 𝒫 B = 𝒫 Base K 𝒫 B = 𝒫 Base K t 𝒫 B , u 𝒫 B ran x t , y u x + K y = t 𝒫 Base K , u 𝒫 Base K ran x t , y u x + K y
21 19 19 20 syl2anc φ t 𝒫 B , u 𝒫 B ran x t , y u x + K y = t 𝒫 Base K , u 𝒫 Base K ran x t , y u x + K y
22 2 pweqd φ 𝒫 B = 𝒫 Base L
23 mpoeq12 𝒫 B = 𝒫 Base L 𝒫 B = 𝒫 Base L t 𝒫 B , u 𝒫 B ran x t , y u x + L y = t 𝒫 Base L , u 𝒫 Base L ran x t , y u x + L y
24 22 22 23 syl2anc φ t 𝒫 B , u 𝒫 B ran x t , y u x + L y = t 𝒫 Base L , u 𝒫 Base L ran x t , y u x + L y
25 18 21 24 3eqtr3d φ t 𝒫 Base K , u 𝒫 Base K ran x t , y u x + K y = t 𝒫 Base L , u 𝒫 Base L ran x t , y u x + L y
26 eqid Base K = Base K
27 eqid + K = + K
28 eqid LSSum K = LSSum K
29 26 27 28 lsmfval K V LSSum K = t 𝒫 Base K , u 𝒫 Base K ran x t , y u x + K y
30 4 29 syl φ LSSum K = t 𝒫 Base K , u 𝒫 Base K ran x t , y u x + K y
31 eqid Base L = Base L
32 eqid + L = + L
33 eqid LSSum L = LSSum L
34 31 32 33 lsmfval L W LSSum L = t 𝒫 Base L , u 𝒫 Base L ran x t , y u x + L y
35 5 34 syl φ LSSum L = t 𝒫 Base L , u 𝒫 Base L ran x t , y u x + L y
36 25 30 35 3eqtr4d φ LSSum K = LSSum L