| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmpropd.b1 |  | 
						
							| 2 |  | lsmpropd.b2 |  | 
						
							| 3 |  | lsmpropd.p |  | 
						
							| 4 |  | lsmpropd.v1 |  | 
						
							| 5 |  | lsmpropd.v2 |  | 
						
							| 6 |  | simp11 |  | 
						
							| 7 |  | simp12 |  | 
						
							| 8 | 7 | elpwid |  | 
						
							| 9 |  | simp2 |  | 
						
							| 10 | 8 9 | sseldd |  | 
						
							| 11 |  | simp13 |  | 
						
							| 12 | 11 | elpwid |  | 
						
							| 13 |  | simp3 |  | 
						
							| 14 | 12 13 | sseldd |  | 
						
							| 15 | 6 10 14 3 | syl12anc |  | 
						
							| 16 | 15 | mpoeq3dva |  | 
						
							| 17 | 16 | rneqd |  | 
						
							| 18 | 17 | mpoeq3dva |  | 
						
							| 19 | 1 | pweqd |  | 
						
							| 20 |  | mpoeq12 |  | 
						
							| 21 | 19 19 20 | syl2anc |  | 
						
							| 22 | 2 | pweqd |  | 
						
							| 23 |  | mpoeq12 |  | 
						
							| 24 | 22 22 23 | syl2anc |  | 
						
							| 25 | 18 21 24 | 3eqtr3d |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 26 27 28 | lsmfval |  | 
						
							| 30 | 4 29 | syl |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 31 32 33 | lsmfval |  | 
						
							| 35 | 5 34 | syl |  | 
						
							| 36 | 25 30 35 | 3eqtr4d |  |