Metamath Proof Explorer


Theorem lsmpropd

Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)

Ref Expression
Hypotheses lsmpropd.b1 φB=BaseK
lsmpropd.b2 φB=BaseL
lsmpropd.p φxByBx+Ky=x+Ly
lsmpropd.v1 φKV
lsmpropd.v2 φLW
Assertion lsmpropd φLSSumK=LSSumL

Proof

Step Hyp Ref Expression
1 lsmpropd.b1 φB=BaseK
2 lsmpropd.b2 φB=BaseL
3 lsmpropd.p φxByBx+Ky=x+Ly
4 lsmpropd.v1 φKV
5 lsmpropd.v2 φLW
6 simp11 φt𝒫Bu𝒫Bxtyuφ
7 simp12 φt𝒫Bu𝒫Bxtyut𝒫B
8 7 elpwid φt𝒫Bu𝒫BxtyutB
9 simp2 φt𝒫Bu𝒫Bxtyuxt
10 8 9 sseldd φt𝒫Bu𝒫BxtyuxB
11 simp13 φt𝒫Bu𝒫Bxtyuu𝒫B
12 11 elpwid φt𝒫Bu𝒫BxtyuuB
13 simp3 φt𝒫Bu𝒫Bxtyuyu
14 12 13 sseldd φt𝒫Bu𝒫BxtyuyB
15 6 10 14 3 syl12anc φt𝒫Bu𝒫Bxtyux+Ky=x+Ly
16 15 mpoeq3dva φt𝒫Bu𝒫Bxt,yux+Ky=xt,yux+Ly
17 16 rneqd φt𝒫Bu𝒫Branxt,yux+Ky=ranxt,yux+Ly
18 17 mpoeq3dva φt𝒫B,u𝒫Branxt,yux+Ky=t𝒫B,u𝒫Branxt,yux+Ly
19 1 pweqd φ𝒫B=𝒫BaseK
20 mpoeq12 𝒫B=𝒫BaseK𝒫B=𝒫BaseKt𝒫B,u𝒫Branxt,yux+Ky=t𝒫BaseK,u𝒫BaseKranxt,yux+Ky
21 19 19 20 syl2anc φt𝒫B,u𝒫Branxt,yux+Ky=t𝒫BaseK,u𝒫BaseKranxt,yux+Ky
22 2 pweqd φ𝒫B=𝒫BaseL
23 mpoeq12 𝒫B=𝒫BaseL𝒫B=𝒫BaseLt𝒫B,u𝒫Branxt,yux+Ly=t𝒫BaseL,u𝒫BaseLranxt,yux+Ly
24 22 22 23 syl2anc φt𝒫B,u𝒫Branxt,yux+Ly=t𝒫BaseL,u𝒫BaseLranxt,yux+Ly
25 18 21 24 3eqtr3d φt𝒫BaseK,u𝒫BaseKranxt,yux+Ky=t𝒫BaseL,u𝒫BaseLranxt,yux+Ly
26 eqid BaseK=BaseK
27 eqid +K=+K
28 eqid LSSumK=LSSumK
29 26 27 28 lsmfval KVLSSumK=t𝒫BaseK,u𝒫BaseKranxt,yux+Ky
30 4 29 syl φLSSumK=t𝒫BaseK,u𝒫BaseKranxt,yux+Ky
31 eqid BaseL=BaseL
32 eqid +L=+L
33 eqid LSSumL=LSSumL
34 31 32 33 lsmfval LWLSSumL=t𝒫BaseL,u𝒫BaseLranxt,yux+Ly
35 5 34 syl φLSSumL=t𝒫BaseL,u𝒫BaseLranxt,yux+Ly
36 25 30 35 3eqtr4d φLSSumK=LSSumL