Metamath Proof Explorer


Theorem lspabs2

Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015)

Ref Expression
Hypotheses lspabs2.v V=BaseW
lspabs2.p +˙=+W
lspabs2.o 0˙=0W
lspabs2.n N=LSpanW
lspabs2.w φWLVec
lspabs2.x φXV
lspabs2.y φYV0˙
lspabs2.e φNX=NX+˙Y
Assertion lspabs2 φNX=NY

Proof

Step Hyp Ref Expression
1 lspabs2.v V=BaseW
2 lspabs2.p +˙=+W
3 lspabs2.o 0˙=0W
4 lspabs2.n N=LSpanW
5 lspabs2.w φWLVec
6 lspabs2.x φXV
7 lspabs2.y φYV0˙
8 lspabs2.e φNX=NX+˙Y
9 lveclmod WLVecWLMod
10 5 9 syl φWLMod
11 1 4 lspsnsubg WLModXVNXSubGrpW
12 10 6 11 syl2anc φNXSubGrpW
13 7 eldifad φYV
14 1 4 lspsnsubg WLModYVNYSubGrpW
15 10 13 14 syl2anc φNYSubGrpW
16 eqid LSSumW=LSSumW
17 16 lsmub2 NXSubGrpWNYSubGrpWNYNXLSSumWNY
18 12 15 17 syl2anc φNYNXLSSumWNY
19 8 oveq2d φNXLSSumWNX=NXLSSumWNX+˙Y
20 16 lsmidm NXSubGrpWNXLSSumWNX=NX
21 12 20 syl φNXLSSumWNX=NX
22 1 2 4 10 6 13 lspprabs φNXX+˙Y=NXY
23 1 2 lmodvacl WLModXVYVX+˙YV
24 10 6 13 23 syl3anc φX+˙YV
25 1 4 16 10 6 24 lsmpr φNXX+˙Y=NXLSSumWNX+˙Y
26 1 4 16 10 6 13 lsmpr φNXY=NXLSSumWNY
27 22 25 26 3eqtr3d φNXLSSumWNX+˙Y=NXLSSumWNY
28 19 21 27 3eqtr3rd φNXLSSumWNY=NX
29 18 28 sseqtrd φNYNX
30 1 3 4 5 7 6 lspsncmp φNYNXNY=NX
31 29 30 mpbid φNY=NX
32 31 eqcomd φNX=NY