Metamath Proof Explorer


Theorem lspf

Description: The span operator on a left module maps subsets to subsets. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lspval.v V=BaseW
lspval.s S=LSubSpW
lspval.n N=LSpanW
Assertion lspf WLModN:𝒫VS

Proof

Step Hyp Ref Expression
1 lspval.v V=BaseW
2 lspval.s S=LSubSpW
3 lspval.n N=LSpanW
4 1 2 3 lspfval WLModN=s𝒫VpS|sp
5 simpl WLMods𝒫VWLMod
6 ssrab2 pS|spS
7 6 a1i WLMods𝒫VpS|spS
8 1 2 lss1 WLModVS
9 elpwi s𝒫VsV
10 sseq2 p=VspsV
11 10 rspcev VSsVpSsp
12 8 9 11 syl2an WLMods𝒫VpSsp
13 rabn0 pS|sppSsp
14 12 13 sylibr WLMods𝒫VpS|sp
15 2 lssintcl WLModpS|spSpS|sppS|spS
16 5 7 14 15 syl3anc WLMods𝒫VpS|spS
17 4 16 fmpt3d WLModN:𝒫VS