Metamath Proof Explorer


Theorem lspss

Description: Span preserves subset ordering. ( spanss analog.) (Contributed by NM, 11-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspss.v V=BaseW
lspss.n N=LSpanW
Assertion lspss WLModUVTUNTNU

Proof

Step Hyp Ref Expression
1 lspss.v V=BaseW
2 lspss.n N=LSpanW
3 simpl3 WLModUVTUtLSubSpWTU
4 sstr2 TUUtTt
5 3 4 syl WLModUVTUtLSubSpWUtTt
6 5 ss2rabdv WLModUVTUtLSubSpW|UttLSubSpW|Tt
7 intss tLSubSpW|UttLSubSpW|TttLSubSpW|TttLSubSpW|Ut
8 6 7 syl WLModUVTUtLSubSpW|TttLSubSpW|Ut
9 simp1 WLModUVTUWLMod
10 simp3 WLModUVTUTU
11 simp2 WLModUVTUUV
12 10 11 sstrd WLModUVTUTV
13 eqid LSubSpW=LSubSpW
14 1 13 2 lspval WLModTVNT=tLSubSpW|Tt
15 9 12 14 syl2anc WLModUVTUNT=tLSubSpW|Tt
16 1 13 2 lspval WLModUVNU=tLSubSpW|Ut
17 16 3adant3 WLModUVTUNU=tLSubSpW|Ut
18 8 15 17 3sstr4d WLModUVTUNTNU