Metamath Proof Explorer


Theorem lss1

Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssss.v V=BaseW
lssss.s S=LSubSpW
Assertion lss1 WLModVS

Proof

Step Hyp Ref Expression
1 lssss.v V=BaseW
2 lssss.s S=LSubSpW
3 eqidd WLModScalarW=ScalarW
4 eqidd WLModBaseScalarW=BaseScalarW
5 1 a1i WLModV=BaseW
6 eqidd WLMod+W=+W
7 eqidd WLModW=W
8 2 a1i WLModS=LSubSpW
9 ssidd WLModVV
10 1 lmodbn0 WLModV
11 simpl WLModxBaseScalarWaVbVWLMod
12 eqid ScalarW=ScalarW
13 eqid W=W
14 eqid BaseScalarW=BaseScalarW
15 1 12 13 14 lmodvscl WLModxBaseScalarWaVxWaV
16 15 3adant3r3 WLModxBaseScalarWaVbVxWaV
17 simpr3 WLModxBaseScalarWaVbVbV
18 eqid +W=+W
19 1 18 lmodvacl WLModxWaVbVxWa+WbV
20 11 16 17 19 syl3anc WLModxBaseScalarWaVbVxWa+WbV
21 3 4 5 6 7 8 9 10 20 islssd WLModVS