Metamath Proof Explorer


Theorem lssvancl2

Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lssvancl.v V = Base W
lssvancl.p + ˙ = + W
lssvancl.s S = LSubSp W
lssvancl.w φ W LMod
lssvancl.u φ U S
lssvancl.x φ X U
lssvancl.y φ Y V
lssvancl.n φ ¬ Y U
Assertion lssvancl2 φ ¬ Y + ˙ X U

Proof

Step Hyp Ref Expression
1 lssvancl.v V = Base W
2 lssvancl.p + ˙ = + W
3 lssvancl.s S = LSubSp W
4 lssvancl.w φ W LMod
5 lssvancl.u φ U S
6 lssvancl.x φ X U
7 lssvancl.y φ Y V
8 lssvancl.n φ ¬ Y U
9 1 3 lssel U S X U X V
10 5 6 9 syl2anc φ X V
11 1 2 lmodcom W LMod X V Y V X + ˙ Y = Y + ˙ X
12 4 10 7 11 syl3anc φ X + ˙ Y = Y + ˙ X
13 1 2 3 4 5 6 7 8 lssvancl1 φ ¬ X + ˙ Y U
14 12 13 eqneltrrd φ ¬ Y + ˙ X U