Metamath Proof Explorer


Theorem lsw0

Description: The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion lsw0 WWordVW=0lastSW=

Proof

Step Hyp Ref Expression
1 lsw WWordVlastSW=WW1
2 1 adantr WWordVW=0lastSW=WW1
3 fvoveq1 W=0WW1=W01
4 wrddm WWordVdomW=0..^W
5 1nn 1
6 nnnle0 1¬10
7 5 6 ax-mp ¬10
8 0re 0
9 1re 1
10 8 9 subge0i 00110
11 7 10 mtbir ¬001
12 elfzole1 010..^W001
13 11 12 mto ¬010..^W
14 eleq2 domW=0..^W01domW010..^W
15 13 14 mtbiri domW=0..^W¬01domW
16 ndmfv ¬01domWW01=
17 4 15 16 3syl WWordVW01=
18 3 17 sylan9eqr WWordVW=0WW1=
19 2 18 eqtrd WWordVW=0lastSW=