Metamath Proof Explorer


Theorem ltaddsub

Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)

Ref Expression
Assertion ltaddsub ABCA+B<CA<CB

Proof

Step Hyp Ref Expression
1 lesubadd CBACBACA+B
2 1 3com13 ABCCBACA+B
3 resubcl CBCB
4 lenlt CBACBA¬A<CB
5 3 4 stoic3 CBACBA¬A<CB
6 5 3com13 ABCCBA¬A<CB
7 readdcl ABA+B
8 lenlt CA+BCA+B¬A+B<C
9 7 8 sylan2 CABCA+B¬A+B<C
10 9 3impb CABCA+B¬A+B<C
11 10 3coml ABCCA+B¬A+B<C
12 2 6 11 3bitr3rd ABC¬A+B<C¬A<CB
13 12 con4bid ABCA+B<CA<CB