Metamath Proof Explorer


Theorem ltexpri

Description: Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 13-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion ltexpri A<𝑷Bx𝑷A+𝑷x=B

Proof

Step Hyp Ref Expression
1 ltrelpr <𝑷𝑷×𝑷
2 1 brel A<𝑷BA𝑷B𝑷
3 ltprord A𝑷B𝑷A<𝑷BAB
4 oveq2 y=zw+𝑸y=w+𝑸z
5 4 eleq1d y=zw+𝑸yBw+𝑸zB
6 5 anbi2d y=z¬wAw+𝑸yB¬wAw+𝑸zB
7 6 exbidv y=zw¬wAw+𝑸yBw¬wAw+𝑸zB
8 7 cbvabv y|w¬wAw+𝑸yB=z|w¬wAw+𝑸zB
9 8 ltexprlem5 B𝑷ABy|w¬wAw+𝑸yB𝑷
10 9 adantll A𝑷B𝑷ABy|w¬wAw+𝑸yB𝑷
11 8 ltexprlem6 A𝑷B𝑷ABA+𝑷y|w¬wAw+𝑸yBB
12 8 ltexprlem7 A𝑷B𝑷ABBA+𝑷y|w¬wAw+𝑸yB
13 11 12 eqssd A𝑷B𝑷ABA+𝑷y|w¬wAw+𝑸yB=B
14 oveq2 x=y|w¬wAw+𝑸yBA+𝑷x=A+𝑷y|w¬wAw+𝑸yB
15 14 eqeq1d x=y|w¬wAw+𝑸yBA+𝑷x=BA+𝑷y|w¬wAw+𝑸yB=B
16 15 rspcev y|w¬wAw+𝑸yB𝑷A+𝑷y|w¬wAw+𝑸yB=Bx𝑷A+𝑷x=B
17 10 13 16 syl2anc A𝑷B𝑷ABx𝑷A+𝑷x=B
18 17 ex A𝑷B𝑷ABx𝑷A+𝑷x=B
19 3 18 sylbid A𝑷B𝑷A<𝑷Bx𝑷A+𝑷x=B
20 2 19 mpcom A<𝑷Bx𝑷A+𝑷x=B