Metamath Proof Explorer


Theorem ltrncom

Description: Composition is commutative for translations. Part of proof of Lemma G of Crawley p. 116. (Contributed by NM, 5-Jun-2013)

Ref Expression
Hypotheses ltrncom.h H=LHypK
ltrncom.t T=LTrnKW
Assertion ltrncom KHLWHFTGTFG=GF

Proof

Step Hyp Ref Expression
1 ltrncom.h H=LHypK
2 ltrncom.t T=LTrnKW
3 simpl1 KHLWHFTGTF=IBaseKKHLWH
4 simpl2 KHLWHFTGTF=IBaseKFT
5 simpl3 KHLWHFTGTF=IBaseKGT
6 simpr KHLWHFTGTF=IBaseKF=IBaseK
7 eqid BaseK=BaseK
8 7 1 2 cdlemg47a KHLWHFTGTF=IBaseKFG=GF
9 3 4 5 6 8 syl121anc KHLWHFTGTF=IBaseKFG=GF
10 simpll1 KHLWHFTGTFIBaseKtrLKWF=trLKWGKHLWH
11 simpll2 KHLWHFTGTFIBaseKtrLKWF=trLKWGFT
12 simpll3 KHLWHFTGTFIBaseKtrLKWF=trLKWGGT
13 simplr KHLWHFTGTFIBaseKtrLKWF=trLKWGFIBaseK
14 simpr KHLWHFTGTFIBaseKtrLKWF=trLKWGtrLKWF=trLKWG
15 eqid trLKW=trLKW
16 7 1 2 15 cdlemg48 KHLWHFTGTFIBaseKtrLKWF=trLKWGFG=GF
17 10 11 12 13 14 16 syl122anc KHLWHFTGTFIBaseKtrLKWF=trLKWGFG=GF
18 simpll1 KHLWHFTGTFIBaseKtrLKWFtrLKWGKHLWH
19 simpll2 KHLWHFTGTFIBaseKtrLKWFtrLKWGFT
20 simpll3 KHLWHFTGTFIBaseKtrLKWFtrLKWGGT
21 simpr KHLWHFTGTFIBaseKtrLKWFtrLKWGtrLKWFtrLKWG
22 1 2 15 cdlemg44 KHLWHFTGTtrLKWFtrLKWGFG=GF
23 18 19 20 21 22 syl121anc KHLWHFTGTFIBaseKtrLKWFtrLKWGFG=GF
24 17 23 pm2.61dane KHLWHFTGTFIBaseKFG=GF
25 9 24 pm2.61dane KHLWHFTGTFG=GF