Description: Composition is commutative for translations. Part of proof of Lemma G of Crawley p. 116. (Contributed by NM, 5-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltrncom.h | |
|
ltrncom.t | |
||
Assertion | ltrncom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrncom.h | |
|
2 | ltrncom.t | |
|
3 | simpl1 | |
|
4 | simpl2 | |
|
5 | simpl3 | |
|
6 | simpr | |
|
7 | eqid | |
|
8 | 7 1 2 | cdlemg47a | |
9 | 3 4 5 6 8 | syl121anc | |
10 | simpll1 | |
|
11 | simpll2 | |
|
12 | simpll3 | |
|
13 | simplr | |
|
14 | simpr | |
|
15 | eqid | |
|
16 | 7 1 2 15 | cdlemg48 | |
17 | 10 11 12 13 14 16 | syl122anc | |
18 | simpll1 | |
|
19 | simpll2 | |
|
20 | simpll3 | |
|
21 | simpr | |
|
22 | 1 2 15 | cdlemg44 | |
23 | 18 19 20 21 22 | syl121anc | |
24 | 17 23 | pm2.61dane | |
25 | 9 24 | pm2.61dane | |