Metamath Proof Explorer


Theorem ltrnfset

Description: The set of all lattice translations for a lattice K . (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ltrnset.l ˙=K
ltrnset.j ˙=joinK
ltrnset.m ˙=meetK
ltrnset.a A=AtomsK
ltrnset.h H=LHypK
Assertion ltrnfset KCLTrnK=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w

Proof

Step Hyp Ref Expression
1 ltrnset.l ˙=K
2 ltrnset.j ˙=joinK
3 ltrnset.m ˙=meetK
4 ltrnset.a A=AtomsK
5 ltrnset.h H=LHypK
6 elex KCKV
7 fveq2 k=KLHypk=LHypK
8 7 5 eqtr4di k=KLHypk=H
9 fveq2 k=KLDilk=LDilK
10 9 fveq1d k=KLDilkw=LDilKw
11 fveq2 k=KAtomsk=AtomsK
12 11 4 eqtr4di k=KAtomsk=A
13 fveq2 k=Kk=K
14 13 1 eqtr4di k=Kk=˙
15 14 breqd k=Kpkwp˙w
16 15 notbid k=K¬pkw¬p˙w
17 14 breqd k=Kqkwq˙w
18 17 notbid k=K¬qkw¬q˙w
19 16 18 anbi12d k=K¬pkw¬qkw¬p˙w¬q˙w
20 fveq2 k=Kmeetk=meetK
21 20 3 eqtr4di k=Kmeetk=˙
22 fveq2 k=Kjoink=joinK
23 22 2 eqtr4di k=Kjoink=˙
24 23 oveqd k=Kpjoinkfp=p˙fp
25 eqidd k=Kw=w
26 21 24 25 oveq123d k=Kpjoinkfpmeetkw=p˙fp˙w
27 23 oveqd k=Kqjoinkfq=q˙fq
28 21 27 25 oveq123d k=Kqjoinkfqmeetkw=q˙fq˙w
29 26 28 eqeq12d k=Kpjoinkfpmeetkw=qjoinkfqmeetkwp˙fp˙w=q˙fq˙w
30 19 29 imbi12d k=K¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkw¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
31 12 30 raleqbidv k=KqAtomsk¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkwqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
32 12 31 raleqbidv k=KpAtomskqAtomsk¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkwpAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
33 10 32 rabeqbidv k=KfLDilkw|pAtomskqAtomsk¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkw=fLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
34 8 33 mpteq12dv k=KwLHypkfLDilkw|pAtomskqAtomsk¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkw=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
35 df-ltrn LTrn=kVwLHypkfLDilkw|pAtomskqAtomsk¬pkw¬qkwpjoinkfpmeetkw=qjoinkfqmeetkw
36 34 35 5 mptfvmpt KVLTrnK=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w
37 6 36 syl KCLTrnK=wHfLDilKw|pAqA¬p˙w¬q˙wp˙fp˙w=q˙fq˙w