Metamath Proof Explorer


Theorem ltrniotavalbN

Description: Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotavalb.l ˙=K
ltrniotavalb.a A=AtomsK
ltrniotavalb.h H=LHypK
ltrniotavalb.t T=LTrnKW
Assertion ltrniotavalbN KHLWHPA¬P˙WQA¬Q˙WFTFP=QF=ιfT|fP=Q

Proof

Step Hyp Ref Expression
1 ltrniotavalb.l ˙=K
2 ltrniotavalb.a A=AtomsK
3 ltrniotavalb.h H=LHypK
4 ltrniotavalb.t T=LTrnKW
5 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTFP=QKHLWH
6 simpl3 KHLWHPA¬P˙WQA¬Q˙WFTFP=QFT
7 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTFP=QPA¬P˙W
8 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTFP=QQA¬Q˙W
9 eqid ιfT|fP=Q=ιfT|fP=Q
10 1 2 3 4 9 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WιfT|fP=QT
11 5 7 8 10 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTFP=QιfT|fP=QT
12 simpr KHLWHPA¬P˙WQA¬Q˙WFTFP=QFP=Q
13 1 2 3 4 9 ltrniotaval KHLWHPA¬P˙WQA¬Q˙WιfT|fP=QP=Q
14 5 7 8 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTFP=QιfT|fP=QP=Q
15 12 14 eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTFP=QFP=ιfT|fP=QP
16 1 2 3 4 cdlemd KHLWHFTιfT|fP=QTPA¬P˙WFP=ιfT|fP=QPF=ιfT|fP=Q
17 5 6 11 7 15 16 syl311anc KHLWHPA¬P˙WQA¬Q˙WFTFP=QF=ιfT|fP=Q
18 fveq1 F=ιfT|fP=QFP=ιfT|fP=QP
19 simp1 KHLWHPA¬P˙WQA¬Q˙WFTKHLWH
20 simp2l KHLWHPA¬P˙WQA¬Q˙WFTPA¬P˙W
21 simp2r KHLWHPA¬P˙WQA¬Q˙WFTQA¬Q˙W
22 19 20 21 13 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTιfT|fP=QP=Q
23 18 22 sylan9eqr KHLWHPA¬P˙WQA¬Q˙WFTF=ιfT|fP=QFP=Q
24 17 23 impbida KHLWHPA¬P˙WQA¬Q˙WFTFP=QF=ιfT|fP=Q