Metamath Proof Explorer


Theorem ltsubsubb

Description: Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020)

Ref Expression
Assertion ltsubsubb ABCDAC<BDAB<CD

Proof

Step Hyp Ref Expression
1 simprl ABCDC
2 1 recnd ABCDC
3 simprr ABCDD
4 3 recnd ABCDD
5 simplr ABCDB
6 5 recnd ABCDB
7 subadd23 CDBC-D+B=C+B-D
8 7 eqcomd CDBC+B-D=C-D+B
9 2 4 6 8 syl3anc ABCDC+B-D=C-D+B
10 9 breq2d ABCDA<C+B-DA<C-D+B
11 simpll ABCDA
12 resubcl BDBD
13 12 ad2ant2l ABCDBD
14 11 1 13 ltsubadd2d ABCDAC<BDA<C+B-D
15 resubcl CDCD
16 15 adantl ABCDCD
17 11 5 16 ltsubaddd ABCDAB<CDA<C-D+B
18 10 14 17 3bitr4d ABCDAC<BDAB<CD